MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovelimab Structured version   Visualization version   GIF version

Theorem ovelimab 7326
Description: Operation value in an image. (Contributed by Mario Carneiro, 23-Dec-2013.) (Revised by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
ovelimab ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑥𝐵𝑦𝐶 𝐷 = (𝑥𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦

Proof of Theorem ovelimab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fvelimab 6737 . 2 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑧 ∈ (𝐵 × 𝐶)(𝐹𝑧) = 𝐷))
2 fveq2 6670 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
3 df-ov 7159 . . . . . 6 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
42, 3syl6eqr 2874 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝑥𝐹𝑦))
54eqeq1d 2823 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹𝑧) = 𝐷 ↔ (𝑥𝐹𝑦) = 𝐷))
6 eqcom 2828 . . . 4 ((𝑥𝐹𝑦) = 𝐷𝐷 = (𝑥𝐹𝑦))
75, 6syl6bb 289 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹𝑧) = 𝐷𝐷 = (𝑥𝐹𝑦)))
87rexxp 5713 . 2 (∃𝑧 ∈ (𝐵 × 𝐶)(𝐹𝑧) = 𝐷 ↔ ∃𝑥𝐵𝑦𝐶 𝐷 = (𝑥𝐹𝑦))
91, 8syl6bb 289 1 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑥𝐵𝑦𝐶 𝐷 = (𝑥𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3139  wss 3936  cop 4573   × cxp 5553  cima 5558   Fn wfn 6350  cfv 6355  (class class class)co 7156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-fv 6363  df-ov 7159
This theorem is referenced by:  dfz2  12001  elq  12351  shsel  29091  ofrn2  30387  eulerpartlemgh  31636
  Copyright terms: Public domain W3C validator