Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemgh Structured version   Visualization version   GIF version

Theorem eulerpartlemgh 31638
Description: Lemma for eulerpart 31642: The 𝐹 function is a bijection on the 𝑈 subsets. (Contributed by Thierry Arnoux, 15-Aug-2018.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
eulerpartlemgh.1 𝑈 = 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡)))
Assertion
Ref Expression
eulerpartlemgh (𝐴 ∈ (𝑇𝑅) → (𝐹𝑈):𝑈1-1-onto→{𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚})
Distinct variable groups:   𝑧,𝑡   𝑓,𝑔,𝑘,𝑛,𝑡,𝐴   𝑓,𝐽,𝑛,𝑡   𝑓,𝑁,𝑘,𝑛,𝑡   𝑛,𝑂,𝑡   𝑃,𝑔,𝑘   𝑅,𝑓,𝑘,𝑛,𝑡   𝑇,𝑛,𝑡   𝑥,𝑡,𝑦,𝑧   𝑓,𝑚,𝑥,𝑔,𝑘,𝑛,𝑡,𝐴   𝑛,𝐹,𝑡,𝑥   𝑦,𝑓,𝑛   𝑥,𝐽,𝑦   𝑡,𝑃
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑜,𝑟)   𝐷(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑚,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑚,𝑛,𝑜,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑔,𝑚,𝑜,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑜,𝑟)   𝑈(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑚,𝑛,𝑜,𝑟)   𝐹(𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑜,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑚,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑚,𝑛,𝑜,𝑟)   𝐽(𝑧,𝑔,𝑘,𝑚,𝑜,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑚,𝑛,𝑜,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑔,𝑚,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑜,𝑟)

Proof of Theorem eulerpartlemgh
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eulerpart.j . . . . 5 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
2 eulerpart.f . . . . 5 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
31, 2oddpwdc 31614 . . . 4 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
4 f1of1 6616 . . . 4 (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → 𝐹:(𝐽 × ℕ0)–1-1→ℕ)
53, 4ax-mp 5 . . 3 𝐹:(𝐽 × ℕ0)–1-1→ℕ
6 eulerpartlemgh.1 . . . 4 𝑈 = 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡)))
7 iunss 4971 . . . . 5 ( 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡))) ⊆ (𝐽 × ℕ0) ↔ ∀𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡))) ⊆ (𝐽 × ℕ0))
8 inss2 4208 . . . . . . . 8 ((𝐴 “ ℕ) ∩ 𝐽) ⊆ 𝐽
98sseli 3965 . . . . . . 7 (𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽) → 𝑡𝐽)
109snssd 4744 . . . . . 6 (𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽) → {𝑡} ⊆ 𝐽)
11 bitsss 15777 . . . . . 6 (bits‘(𝐴𝑡)) ⊆ ℕ0
12 xpss12 5572 . . . . . 6 (({𝑡} ⊆ 𝐽 ∧ (bits‘(𝐴𝑡)) ⊆ ℕ0) → ({𝑡} × (bits‘(𝐴𝑡))) ⊆ (𝐽 × ℕ0))
1310, 11, 12sylancl 588 . . . . 5 (𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽) → ({𝑡} × (bits‘(𝐴𝑡))) ⊆ (𝐽 × ℕ0))
147, 13mprgbir 3155 . . . 4 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡))) ⊆ (𝐽 × ℕ0)
156, 14eqsstri 4003 . . 3 𝑈 ⊆ (𝐽 × ℕ0)
16 f1ores 6631 . . 3 ((𝐹:(𝐽 × ℕ0)–1-1→ℕ ∧ 𝑈 ⊆ (𝐽 × ℕ0)) → (𝐹𝑈):𝑈1-1-onto→(𝐹𝑈))
175, 15, 16mp2an 690 . 2 (𝐹𝑈):𝑈1-1-onto→(𝐹𝑈)
18 simpr 487 . . . . . . . . . 10 ((((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 ∈ (bits‘(𝐴𝑡))) ∧ ((2↑𝑛) · 𝑡) = 𝑝) → ((2↑𝑛) · 𝑡) = 𝑝)
19 2nn 11713 . . . . . . . . . . . . . 14 2 ∈ ℕ
2019a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 ∈ (bits‘(𝐴𝑡))) → 2 ∈ ℕ)
2111sseli 3965 . . . . . . . . . . . . . 14 (𝑛 ∈ (bits‘(𝐴𝑡)) → 𝑛 ∈ ℕ0)
2221adantl 484 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 ∈ (bits‘(𝐴𝑡))) → 𝑛 ∈ ℕ0)
2320, 22nnexpcld 13609 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 ∈ (bits‘(𝐴𝑡))) → (2↑𝑛) ∈ ℕ)
24 simplr 767 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 ∈ (bits‘(𝐴𝑡))) → 𝑡 ∈ ℕ)
2523, 24nnmulcld 11693 . . . . . . . . . . 11 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 ∈ (bits‘(𝐴𝑡))) → ((2↑𝑛) · 𝑡) ∈ ℕ)
2625adantr 483 . . . . . . . . . 10 ((((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 ∈ (bits‘(𝐴𝑡))) ∧ ((2↑𝑛) · 𝑡) = 𝑝) → ((2↑𝑛) · 𝑡) ∈ ℕ)
2718, 26eqeltrrd 2916 . . . . . . . . 9 ((((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 ∈ (bits‘(𝐴𝑡))) ∧ ((2↑𝑛) · 𝑡) = 𝑝) → 𝑝 ∈ ℕ)
2827rexlimdva2 3289 . . . . . . . 8 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) → (∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝𝑝 ∈ ℕ))
2928rexlimdva 3286 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝𝑝 ∈ ℕ))
3029pm4.71rd 565 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝 ↔ (𝑝 ∈ ℕ ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)))
31 rex0 4319 . . . . . . . . . . . . . . 15 ¬ ∃𝑛 ∈ ∅ ((2↑𝑛) · 𝑡) = 𝑝
32 simplr 767 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → 𝑡 ∈ ℕ)
33 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → ¬ 𝑡 ∈ (𝐴 “ ℕ))
34 eulerpart.p . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
35 eulerpart.o . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
36 eulerpart.d . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
37 eulerpart.h . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
38 eulerpart.m . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
39 eulerpart.r . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
40 eulerpart.t . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
4134, 35, 36, 1, 2, 37, 38, 39, 40eulerpartlemt0 31629 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
4241simp1bi 1141 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ (𝑇𝑅) → 𝐴 ∈ (ℕ0m ℕ))
43 elmapi 8430 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ (ℕ0m ℕ) → 𝐴:ℕ⟶ℕ0)
4442, 43syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ (𝑇𝑅) → 𝐴:ℕ⟶ℕ0)
4544ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → 𝐴:ℕ⟶ℕ0)
46 ffn 6516 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴:ℕ⟶ℕ0𝐴 Fn ℕ)
47 elpreima 6830 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 Fn ℕ → (𝑡 ∈ (𝐴 “ ℕ) ↔ (𝑡 ∈ ℕ ∧ (𝐴𝑡) ∈ ℕ)))
4845, 46, 473syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → (𝑡 ∈ (𝐴 “ ℕ) ↔ (𝑡 ∈ ℕ ∧ (𝐴𝑡) ∈ ℕ)))
4933, 48mtbid 326 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → ¬ (𝑡 ∈ ℕ ∧ (𝐴𝑡) ∈ ℕ))
50 imnan 402 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℕ → ¬ (𝐴𝑡) ∈ ℕ) ↔ ¬ (𝑡 ∈ ℕ ∧ (𝐴𝑡) ∈ ℕ))
5149, 50sylibr 236 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → (𝑡 ∈ ℕ → ¬ (𝐴𝑡) ∈ ℕ))
5232, 51mpd 15 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → ¬ (𝐴𝑡) ∈ ℕ)
5345, 32ffvelrnd 6854 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → (𝐴𝑡) ∈ ℕ0)
54 elnn0 11902 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑡) ∈ ℕ0 ↔ ((𝐴𝑡) ∈ ℕ ∨ (𝐴𝑡) = 0))
5553, 54sylib 220 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → ((𝐴𝑡) ∈ ℕ ∨ (𝐴𝑡) = 0))
56 orel1 885 . . . . . . . . . . . . . . . . . . 19 (¬ (𝐴𝑡) ∈ ℕ → (((𝐴𝑡) ∈ ℕ ∨ (𝐴𝑡) = 0) → (𝐴𝑡) = 0))
5752, 55, 56sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → (𝐴𝑡) = 0)
5857fveq2d 6676 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → (bits‘(𝐴𝑡)) = (bits‘0))
59 0bits 15790 . . . . . . . . . . . . . . . . 17 (bits‘0) = ∅
6058, 59syl6eq 2874 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → (bits‘(𝐴𝑡)) = ∅)
6160rexeqdv 3418 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → (∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝 ↔ ∃𝑛 ∈ ∅ ((2↑𝑛) · 𝑡) = 𝑝))
6231, 61mtbiri 329 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → ¬ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)
6362ex 415 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) → (¬ 𝑡 ∈ (𝐴 “ ℕ) → ¬ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
6463con4d 115 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) → (∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝𝑡 ∈ (𝐴 “ ℕ)))
6564impr 457 . . . . . . . . . . 11 ((𝐴 ∈ (𝑇𝑅) ∧ (𝑡 ∈ ℕ ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)) → 𝑡 ∈ (𝐴 “ ℕ))
66 eldif 3948 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ (ℕ ∖ 𝐽) ↔ (𝑡 ∈ ℕ ∧ ¬ 𝑡𝐽))
6734, 35, 36, 1, 2, 37, 38, 39, 40eulerpartlemf 31630 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → (𝐴𝑡) = 0)
6866, 67sylan2br 596 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ (𝑇𝑅) ∧ (𝑡 ∈ ℕ ∧ ¬ 𝑡𝐽)) → (𝐴𝑡) = 0)
6968anassrs 470 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡𝐽) → (𝐴𝑡) = 0)
7069fveq2d 6676 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡𝐽) → (bits‘(𝐴𝑡)) = (bits‘0))
7170, 59syl6eq 2874 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡𝐽) → (bits‘(𝐴𝑡)) = ∅)
7271rexeqdv 3418 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡𝐽) → (∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝 ↔ ∃𝑛 ∈ ∅ ((2↑𝑛) · 𝑡) = 𝑝))
7331, 72mtbiri 329 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡𝐽) → ¬ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)
7473ex 415 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) → (¬ 𝑡𝐽 → ¬ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
7574con4d 115 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) → (∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝𝑡𝐽))
7675impr 457 . . . . . . . . . . 11 ((𝐴 ∈ (𝑇𝑅) ∧ (𝑡 ∈ ℕ ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)) → 𝑡𝐽)
7765, 76elind 4173 . . . . . . . . . 10 ((𝐴 ∈ (𝑇𝑅) ∧ (𝑡 ∈ ℕ ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)) → 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽))
78 simprr 771 . . . . . . . . . 10 ((𝐴 ∈ (𝑇𝑅) ∧ (𝑡 ∈ ℕ ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)) → ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)
7977, 78jca 514 . . . . . . . . 9 ((𝐴 ∈ (𝑇𝑅) ∧ (𝑡 ∈ ℕ ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)) → (𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽) ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
8079ex 415 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → ((𝑡 ∈ ℕ ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝) → (𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽) ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)))
8180reximdv2 3273 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝 → ∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
82 ssrab2 4058 . . . . . . . . . 10 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ⊆ ℕ
831, 82eqsstri 4003 . . . . . . . . 9 𝐽 ⊆ ℕ
848, 83sstri 3978 . . . . . . . 8 ((𝐴 “ ℕ) ∩ 𝐽) ⊆ ℕ
85 ssrexv 4036 . . . . . . . 8 (((𝐴 “ ℕ) ∩ 𝐽) ⊆ ℕ → (∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝 → ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
8684, 85mp1i 13 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝 → ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
8781, 86impbid 214 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝 ↔ ∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
8830, 87bitr3d 283 . . . . 5 (𝐴 ∈ (𝑇𝑅) → ((𝑝 ∈ ℕ ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝) ↔ ∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
89 eqeq2 2835 . . . . . . . 8 (𝑚 = 𝑝 → (((2↑𝑛) · 𝑡) = 𝑚 ↔ ((2↑𝑛) · 𝑡) = 𝑝))
90892rexbidv 3302 . . . . . . 7 (𝑚 = 𝑝 → (∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚 ↔ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
9190elrab 3682 . . . . . 6 (𝑝 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚} ↔ (𝑝 ∈ ℕ ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
9291a1i 11 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝑝 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚} ↔ (𝑝 ∈ ℕ ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)))
936imaeq2i 5929 . . . . . . . . 9 (𝐹𝑈) = (𝐹 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡))))
94 imaiun 7006 . . . . . . . . 9 (𝐹 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡)))) = 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)(𝐹 “ ({𝑡} × (bits‘(𝐴𝑡))))
9593, 94eqtri 2846 . . . . . . . 8 (𝐹𝑈) = 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)(𝐹 “ ({𝑡} × (bits‘(𝐴𝑡))))
9695eleq2i 2906 . . . . . . 7 (𝑝 ∈ (𝐹𝑈) ↔ 𝑝 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)(𝐹 “ ({𝑡} × (bits‘(𝐴𝑡)))))
97 eliun 4925 . . . . . . 7 (𝑝 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)(𝐹 “ ({𝑡} × (bits‘(𝐴𝑡)))) ↔ ∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)𝑝 ∈ (𝐹 “ ({𝑡} × (bits‘(𝐴𝑡)))))
98 f1ofn 6618 . . . . . . . . . . . . 13 (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → 𝐹 Fn (𝐽 × ℕ0))
993, 98ax-mp 5 . . . . . . . . . . . 12 𝐹 Fn (𝐽 × ℕ0)
100 snssi 4743 . . . . . . . . . . . . 13 (𝑡𝐽 → {𝑡} ⊆ 𝐽)
101100, 11, 12sylancl 588 . . . . . . . . . . . 12 (𝑡𝐽 → ({𝑡} × (bits‘(𝐴𝑡))) ⊆ (𝐽 × ℕ0))
102 ovelimab 7328 . . . . . . . . . . . 12 ((𝐹 Fn (𝐽 × ℕ0) ∧ ({𝑡} × (bits‘(𝐴𝑡))) ⊆ (𝐽 × ℕ0)) → (𝑝 ∈ (𝐹 “ ({𝑡} × (bits‘(𝐴𝑡)))) ↔ ∃𝑥 ∈ {𝑡}∃𝑛 ∈ (bits‘(𝐴𝑡))𝑝 = (𝑥𝐹𝑛)))
10399, 101, 102sylancr 589 . . . . . . . . . . 11 (𝑡𝐽 → (𝑝 ∈ (𝐹 “ ({𝑡} × (bits‘(𝐴𝑡)))) ↔ ∃𝑥 ∈ {𝑡}∃𝑛 ∈ (bits‘(𝐴𝑡))𝑝 = (𝑥𝐹𝑛)))
104 vex 3499 . . . . . . . . . . . 12 𝑡 ∈ V
105 oveq1 7165 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (𝑥𝐹𝑛) = (𝑡𝐹𝑛))
106105eqeq2d 2834 . . . . . . . . . . . . 13 (𝑥 = 𝑡 → (𝑝 = (𝑥𝐹𝑛) ↔ 𝑝 = (𝑡𝐹𝑛)))
107106rexbidv 3299 . . . . . . . . . . . 12 (𝑥 = 𝑡 → (∃𝑛 ∈ (bits‘(𝐴𝑡))𝑝 = (𝑥𝐹𝑛) ↔ ∃𝑛 ∈ (bits‘(𝐴𝑡))𝑝 = (𝑡𝐹𝑛)))
108104, 107rexsn 4622 . . . . . . . . . . 11 (∃𝑥 ∈ {𝑡}∃𝑛 ∈ (bits‘(𝐴𝑡))𝑝 = (𝑥𝐹𝑛) ↔ ∃𝑛 ∈ (bits‘(𝐴𝑡))𝑝 = (𝑡𝐹𝑛))
109103, 108syl6bb 289 . . . . . . . . . 10 (𝑡𝐽 → (𝑝 ∈ (𝐹 “ ({𝑡} × (bits‘(𝐴𝑡)))) ↔ ∃𝑛 ∈ (bits‘(𝐴𝑡))𝑝 = (𝑡𝐹𝑛)))
110 df-ov 7161 . . . . . . . . . . . . . . 15 (𝑡𝐹𝑛) = (𝐹‘⟨𝑡, 𝑛⟩)
111110eqeq1i 2828 . . . . . . . . . . . . . 14 ((𝑡𝐹𝑛) = 𝑝 ↔ (𝐹‘⟨𝑡, 𝑛⟩) = 𝑝)
112 eqcom 2830 . . . . . . . . . . . . . 14 ((𝑡𝐹𝑛) = 𝑝𝑝 = (𝑡𝐹𝑛))
113111, 112bitr3i 279 . . . . . . . . . . . . 13 ((𝐹‘⟨𝑡, 𝑛⟩) = 𝑝𝑝 = (𝑡𝐹𝑛))
114 opelxpi 5594 . . . . . . . . . . . . . . 15 ((𝑡𝐽𝑛 ∈ ℕ0) → ⟨𝑡, 𝑛⟩ ∈ (𝐽 × ℕ0))
1151, 2oddpwdcv 31615 . . . . . . . . . . . . . . . 16 (⟨𝑡, 𝑛⟩ ∈ (𝐽 × ℕ0) → (𝐹‘⟨𝑡, 𝑛⟩) = ((2↑(2nd ‘⟨𝑡, 𝑛⟩)) · (1st ‘⟨𝑡, 𝑛⟩)))
116 vex 3499 . . . . . . . . . . . . . . . . . . 19 𝑛 ∈ V
117104, 116op2nd 7700 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨𝑡, 𝑛⟩) = 𝑛
118117oveq2i 7169 . . . . . . . . . . . . . . . . 17 (2↑(2nd ‘⟨𝑡, 𝑛⟩)) = (2↑𝑛)
119104, 116op1st 7699 . . . . . . . . . . . . . . . . 17 (1st ‘⟨𝑡, 𝑛⟩) = 𝑡
120118, 119oveq12i 7170 . . . . . . . . . . . . . . . 16 ((2↑(2nd ‘⟨𝑡, 𝑛⟩)) · (1st ‘⟨𝑡, 𝑛⟩)) = ((2↑𝑛) · 𝑡)
121115, 120syl6eq 2874 . . . . . . . . . . . . . . 15 (⟨𝑡, 𝑛⟩ ∈ (𝐽 × ℕ0) → (𝐹‘⟨𝑡, 𝑛⟩) = ((2↑𝑛) · 𝑡))
122114, 121syl 17 . . . . . . . . . . . . . 14 ((𝑡𝐽𝑛 ∈ ℕ0) → (𝐹‘⟨𝑡, 𝑛⟩) = ((2↑𝑛) · 𝑡))
123122eqeq1d 2825 . . . . . . . . . . . . 13 ((𝑡𝐽𝑛 ∈ ℕ0) → ((𝐹‘⟨𝑡, 𝑛⟩) = 𝑝 ↔ ((2↑𝑛) · 𝑡) = 𝑝))
124113, 123syl5bbr 287 . . . . . . . . . . . 12 ((𝑡𝐽𝑛 ∈ ℕ0) → (𝑝 = (𝑡𝐹𝑛) ↔ ((2↑𝑛) · 𝑡) = 𝑝))
12521, 124sylan2 594 . . . . . . . . . . 11 ((𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡))) → (𝑝 = (𝑡𝐹𝑛) ↔ ((2↑𝑛) · 𝑡) = 𝑝))
126125rexbidva 3298 . . . . . . . . . 10 (𝑡𝐽 → (∃𝑛 ∈ (bits‘(𝐴𝑡))𝑝 = (𝑡𝐹𝑛) ↔ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
127109, 126bitrd 281 . . . . . . . . 9 (𝑡𝐽 → (𝑝 ∈ (𝐹 “ ({𝑡} × (bits‘(𝐴𝑡)))) ↔ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
1289, 127syl 17 . . . . . . . 8 (𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽) → (𝑝 ∈ (𝐹 “ ({𝑡} × (bits‘(𝐴𝑡)))) ↔ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
129128rexbiia 3248 . . . . . . 7 (∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)𝑝 ∈ (𝐹 “ ({𝑡} × (bits‘(𝐴𝑡)))) ↔ ∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)
13096, 97, 1293bitri 299 . . . . . 6 (𝑝 ∈ (𝐹𝑈) ↔ ∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)
131130a1i 11 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝑝 ∈ (𝐹𝑈) ↔ ∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
13288, 92, 1313bitr4rd 314 . . . 4 (𝐴 ∈ (𝑇𝑅) → (𝑝 ∈ (𝐹𝑈) ↔ 𝑝 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚}))
133132eqrdv 2821 . . 3 (𝐴 ∈ (𝑇𝑅) → (𝐹𝑈) = {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚})
134 f1oeq3 6608 . . 3 ((𝐹𝑈) = {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚} → ((𝐹𝑈):𝑈1-1-onto→(𝐹𝑈) ↔ (𝐹𝑈):𝑈1-1-onto→{𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚}))
135133, 134syl 17 . 2 (𝐴 ∈ (𝑇𝑅) → ((𝐹𝑈):𝑈1-1-onto→(𝐹𝑈) ↔ (𝐹𝑈):𝑈1-1-onto→{𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚}))
13617, 135mpbii 235 1 (𝐴 ∈ (𝑇𝑅) → (𝐹𝑈):𝑈1-1-onto→{𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  {cab 2801  wral 3140  wrex 3141  {crab 3144  cdif 3935  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569  cop 4575   ciun 4921   class class class wbr 5068  {copab 5130  cmpt 5148   × cxp 5555  ccnv 5556  cres 5559  cima 5560  ccom 5561   Fn wfn 6352  wf 6353  1-1wf1 6354  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  cmpo 7160  1st c1st 7689  2nd c2nd 7690   supp csupp 7832  m cmap 8408  Fincfn 8511  0cc0 10539  1c1 10540   · cmul 10544  cle 10678  cn 11640  2c2 11695  0cn0 11900  cexp 13432  Σcsu 15044  cdvds 15609  bitscbits 15770  𝟭cind 31271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-dvds 15610  df-bits 15773
This theorem is referenced by:  eulerpartlemgs2  31640
  Copyright terms: Public domain W3C validator