Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspval Structured version   Visualization version   GIF version

Theorem prjspval 39302
Description: Value of the projective space function, which is also known as the projectivization of 𝑉. (Contributed by Steven Nguyen, 29-Apr-2023.)
Hypotheses
Ref Expression
prjspval.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspval.x · = ( ·𝑠𝑉)
prjspval.s 𝑆 = (Scalar‘𝑉)
prjspval.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
prjspval (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}))
Distinct variable group:   𝑥,𝑙,𝑦,𝑉
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   · (𝑥,𝑦,𝑙)   𝐾(𝑥,𝑦,𝑙)

Proof of Theorem prjspval
Dummy variables 𝑏 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6683 . . . . 5 (Base‘𝑣) ∈ V
21difexi 5232 . . . 4 ((Base‘𝑣) ∖ {(0g𝑣)}) ∈ V
32a1i 11 . . 3 (𝑣 = 𝑉 → ((Base‘𝑣) ∖ {(0g𝑣)}) ∈ V)
4 fveq2 6670 . . . . . . . . 9 (𝑣 = 𝑉 → (Base‘𝑣) = (Base‘𝑉))
5 fveq2 6670 . . . . . . . . . 10 (𝑣 = 𝑉 → (0g𝑣) = (0g𝑉))
65sneqd 4579 . . . . . . . . 9 (𝑣 = 𝑉 → {(0g𝑣)} = {(0g𝑉)})
74, 6difeq12d 4100 . . . . . . . 8 (𝑣 = 𝑉 → ((Base‘𝑣) ∖ {(0g𝑣)}) = ((Base‘𝑉) ∖ {(0g𝑉)}))
8 prjspval.b . . . . . . . 8 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
97, 8syl6eqr 2874 . . . . . . 7 (𝑣 = 𝑉 → ((Base‘𝑣) ∖ {(0g𝑣)}) = 𝐵)
109eqeq2d 2832 . . . . . 6 (𝑣 = 𝑉 → (𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)}) ↔ 𝑏 = 𝐵))
1110biimpd 231 . . . . 5 (𝑣 = 𝑉 → (𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)}) → 𝑏 = 𝐵))
1211imp 409 . . . 4 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → 𝑏 = 𝐵)
1311imdistani 571 . . . . . 6 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → (𝑣 = 𝑉𝑏 = 𝐵))
14 eleq2 2901 . . . . . . . 8 (𝑏 = 𝐵 → (𝑥𝑏𝑥𝐵))
15 eleq2 2901 . . . . . . . 8 (𝑏 = 𝐵 → (𝑦𝑏𝑦𝐵))
1614, 15anbi12d 632 . . . . . . 7 (𝑏 = 𝐵 → ((𝑥𝑏𝑦𝑏) ↔ (𝑥𝐵𝑦𝐵)))
17 fveq2 6670 . . . . . . . . . . 11 (𝑣 = 𝑉 → (Scalar‘𝑣) = (Scalar‘𝑉))
18 prjspval.s . . . . . . . . . . 11 𝑆 = (Scalar‘𝑉)
1917, 18syl6eqr 2874 . . . . . . . . . 10 (𝑣 = 𝑉 → (Scalar‘𝑣) = 𝑆)
2019fveq2d 6674 . . . . . . . . 9 (𝑣 = 𝑉 → (Base‘(Scalar‘𝑣)) = (Base‘𝑆))
21 prjspval.k . . . . . . . . 9 𝐾 = (Base‘𝑆)
2220, 21syl6eqr 2874 . . . . . . . 8 (𝑣 = 𝑉 → (Base‘(Scalar‘𝑣)) = 𝐾)
23 fveq2 6670 . . . . . . . . . . 11 (𝑣 = 𝑉 → ( ·𝑠𝑣) = ( ·𝑠𝑉))
24 prjspval.x . . . . . . . . . . 11 · = ( ·𝑠𝑉)
2523, 24syl6eqr 2874 . . . . . . . . . 10 (𝑣 = 𝑉 → ( ·𝑠𝑣) = · )
2625oveqd 7173 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑙( ·𝑠𝑣)𝑦) = (𝑙 · 𝑦))
2726eqeq2d 2832 . . . . . . . 8 (𝑣 = 𝑉 → (𝑥 = (𝑙( ·𝑠𝑣)𝑦) ↔ 𝑥 = (𝑙 · 𝑦)))
2822, 27rexeqbidv 3402 . . . . . . 7 (𝑣 = 𝑉 → (∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦) ↔ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)))
2916, 28bi2anan9r 638 . . . . . 6 ((𝑣 = 𝑉𝑏 = 𝐵) → (((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))))
3013, 29syl 17 . . . . 5 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → (((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))))
3130opabbidv 5132 . . . 4 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))})
3212, 31qseq12d 39173 . . 3 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → (𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}))
333, 32csbied 3919 . 2 (𝑣 = 𝑉((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}))
34 df-prjsp 39301 . 2 ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
35 fvex 6683 . . . . 5 (Base‘𝑉) ∈ V
3635difexi 5232 . . . 4 ((Base‘𝑉) ∖ {(0g𝑉)}) ∈ V
378, 36eqeltri 2909 . . 3 𝐵 ∈ V
3837qsex 8356 . 2 (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}) ∈ V
3933, 34, 38fvmpt 6768 1 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3139  Vcvv 3494  csb 3883  cdif 3933  {csn 4567  {copab 5128  cfv 6355  (class class class)co 7156   / cqs 8288  Basecbs 16483  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713  LVecclvec 19874  ℙ𝕣𝕠𝕛cprjsp 39300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-ec 8291  df-qs 8295  df-prjsp 39301
This theorem is referenced by:  prjspval2  39312  prjspnval2  39316
  Copyright terms: Public domain W3C validator