MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reltrls Structured version   Visualization version   GIF version

Theorem reltrls 26647
Description: The set (Trails‘𝐺) of all trails on 𝐺 is a set of pairs by our definition of a trail, and so is a relation. (Contributed by AV, 29-Oct-2021.)
Assertion
Ref Expression
reltrls Rel (Trails‘𝐺)

Proof of Theorem reltrls
Dummy variables 𝑓 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trls 26645 . 2 Trails = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ Fun 𝑓)})
21relmptopab 6925 1 Rel (Trails‘𝐺)
Colors of variables: wff setvar class
Syntax hints:  wa 383  Vcvv 3231   class class class wbr 4685  ccnv 5142  Rel wrel 5148  Fun wfun 5920  cfv 5926  Walkscwlks 26548  Trailsctrls 26643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fv 5934  df-trls 26645
This theorem is referenced by:  ispth  26675  isspth  26676  iscrct  26741  iseupth  27179
  Copyright terms: Public domain W3C validator