MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispth Structured version   Visualization version   GIF version

Theorem ispth 27490
Description: Conditions for a pair of classes/functions to be a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.)
Assertion
Ref Expression
ispth (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))

Proof of Theorem ispth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pthsfval 27488 . . . 4 (Paths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)}
2 3anass 1091 . . . . 5 ((𝑓(Trails‘𝐺)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅) ↔ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)))
32opabbii 5119 . . . 4 {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅))}
41, 3eqtri 2844 . . 3 (Paths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅))}
5 simpr 487 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑝 = 𝑃)
6 fveq2 6656 . . . . . . . . 9 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
76oveq2d 7158 . . . . . . . 8 (𝑓 = 𝐹 → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹)))
87adantr 483 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹)))
95, 8reseq12d 5840 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝 ↾ (1..^(♯‘𝑓))) = (𝑃 ↾ (1..^(♯‘𝐹))))
109cnveqd 5732 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝 ↾ (1..^(♯‘𝑓))) = (𝑃 ↾ (1..^(♯‘𝐹))))
1110funeqd 6363 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ↔ Fun (𝑃 ↾ (1..^(♯‘𝐹)))))
126preq2d 4662 . . . . . . . 8 (𝑓 = 𝐹 → {0, (♯‘𝑓)} = {0, (♯‘𝐹)})
1312adantr 483 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → {0, (♯‘𝑓)} = {0, (♯‘𝐹)})
145, 13imaeq12d 5916 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝 “ {0, (♯‘𝑓)}) = (𝑃 “ {0, (♯‘𝐹)}))
155, 8imaeq12d 5916 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝 “ (1..^(♯‘𝑓))) = (𝑃 “ (1..^(♯‘𝐹))))
1614, 15ineq12d 4178 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))))
1716eqeq1d 2823 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅ ↔ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
1811, 17anbi12d 632 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → ((Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅) ↔ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)))
19 reltrls 27462 . . 3 Rel (Trails‘𝐺)
204, 18, 19brfvopabrbr 6751 . 2 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)))
21 3anass 1091 . 2 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)))
2220, 21bitr4i 280 1 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1537  cin 3923  c0 4279  {cpr 4555   class class class wbr 5052  {copab 5114  ccnv 5540  cres 5543  cima 5544  Fun wfun 6335  cfv 6341  (class class class)co 7142  0cc0 10523  1c1 10524  ..^cfzo 13023  chash 13680  Trailsctrls 27458  Pathscpths 27479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-card 9354  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-n0 11885  df-z 11969  df-uz 12231  df-fz 12883  df-fzo 13024  df-hash 13681  df-word 13852  df-wlks 27367  df-trls 27460  df-pths 27483
This theorem is referenced by:  pthistrl  27492  spthispth  27493  pthdivtx  27496  2pthnloop  27498  pthdepisspth  27502  pthd  27536  0pth  27888  1pthd  27906  pthhashvtx  32381  subgrpth  32388
  Copyright terms: Public domain W3C validator