MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s111 Structured version   Visualization version   GIF version

Theorem s111 13969
Description: The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s111 ((𝑆𝐴𝑇𝐴) → (⟨“𝑆”⟩ = ⟨“𝑇”⟩ ↔ 𝑆 = 𝑇))

Proof of Theorem s111
StepHypRef Expression
1 s1val 13952 . . 3 (𝑆𝐴 → ⟨“𝑆”⟩ = {⟨0, 𝑆⟩})
2 s1val 13952 . . 3 (𝑇𝐴 → ⟨“𝑇”⟩ = {⟨0, 𝑇⟩})
31, 2eqeqan12d 2838 . 2 ((𝑆𝐴𝑇𝐴) → (⟨“𝑆”⟩ = ⟨“𝑇”⟩ ↔ {⟨0, 𝑆⟩} = {⟨0, 𝑇⟩}))
4 opex 5356 . . 3 ⟨0, 𝑆⟩ ∈ V
5 sneqbg 4774 . . 3 (⟨0, 𝑆⟩ ∈ V → ({⟨0, 𝑆⟩} = {⟨0, 𝑇⟩} ↔ ⟨0, 𝑆⟩ = ⟨0, 𝑇⟩))
64, 5mp1i 13 . 2 ((𝑆𝐴𝑇𝐴) → ({⟨0, 𝑆⟩} = {⟨0, 𝑇⟩} ↔ ⟨0, 𝑆⟩ = ⟨0, 𝑇⟩))
7 0z 11993 . . . 4 0 ∈ ℤ
8 eqid 2821 . . . . 5 0 = 0
9 opthg 5369 . . . . . 6 ((0 ∈ ℤ ∧ 𝑆𝐴) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ (0 = 0 ∧ 𝑆 = 𝑇)))
109baibd 542 . . . . 5 (((0 ∈ ℤ ∧ 𝑆𝐴) ∧ 0 = 0) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇))
118, 10mpan2 689 . . . 4 ((0 ∈ ℤ ∧ 𝑆𝐴) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇))
127, 11mpan 688 . . 3 (𝑆𝐴 → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇))
1312adantr 483 . 2 ((𝑆𝐴𝑇𝐴) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇))
143, 6, 133bitrd 307 1 ((𝑆𝐴𝑇𝐴) → (⟨“𝑆”⟩ = ⟨“𝑇”⟩ ↔ 𝑆 = 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  {csn 4567  cop 4573  0cc0 10537  cz 11982  ⟨“cs1 13949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-1cn 10595  ax-addrcl 10598  ax-rnegex 10608  ax-cnre 10610
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-neg 10873  df-z 11983  df-s1 13950
This theorem is referenced by:  ccats1alpha  13973  pfxsuff1eqwrdeq  14061  s2eq2seq  14299  s3eq3seq  14301  2swrd2eqwrdeq  14315  efgredlemc  18871  mvhf1  32806
  Copyright terms: Public domain W3C validator