Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scottelrankd Structured version   Visualization version   GIF version

Theorem scottelrankd 40657
Description: Property of a Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
scottelrankd.1 (𝜑𝐵 ∈ Scott 𝐴)
scottelrankd.2 (𝜑𝐶 ∈ Scott 𝐴)
Assertion
Ref Expression
scottelrankd (𝜑 → (rank‘𝐵) ⊆ (rank‘𝐶))

Proof of Theorem scottelrankd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6663 . . 3 (𝑦 = 𝐶 → (rank‘𝑦) = (rank‘𝐶))
21sseq2d 3992 . 2 (𝑦 = 𝐶 → ((rank‘𝐵) ⊆ (rank‘𝑦) ↔ (rank‘𝐵) ⊆ (rank‘𝐶)))
3 scottelrankd.1 . . . . 5 (𝜑𝐵 ∈ Scott 𝐴)
4 df-scott 40646 . . . . 5 Scott 𝐴 = {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}
53, 4eleqtrdi 2922 . . . 4 (𝜑𝐵 ∈ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)})
6 fveq2 6663 . . . . . . 7 (𝑥 = 𝐵 → (rank‘𝑥) = (rank‘𝐵))
76sseq1d 3991 . . . . . 6 (𝑥 = 𝐵 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝐵) ⊆ (rank‘𝑦)))
87ralbidv 3196 . . . . 5 (𝑥 = 𝐵 → (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦𝐴 (rank‘𝐵) ⊆ (rank‘𝑦)))
98elrab 3676 . . . 4 (𝐵 ∈ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ↔ (𝐵𝐴 ∧ ∀𝑦𝐴 (rank‘𝐵) ⊆ (rank‘𝑦)))
105, 9sylib 220 . . 3 (𝜑 → (𝐵𝐴 ∧ ∀𝑦𝐴 (rank‘𝐵) ⊆ (rank‘𝑦)))
1110simprd 498 . 2 (𝜑 → ∀𝑦𝐴 (rank‘𝐵) ⊆ (rank‘𝑦))
12 scottelrankd.2 . . . 4 (𝜑𝐶 ∈ Scott 𝐴)
1312, 4eleqtrdi 2922 . . 3 (𝜑𝐶 ∈ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)})
14 elrabi 3671 . . 3 (𝐶 ∈ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} → 𝐶𝐴)
1513, 14syl 17 . 2 (𝜑𝐶𝐴)
162, 11, 15rspcdva 3622 1 (𝜑 → (rank‘𝐵) ⊆ (rank‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wral 3137  {crab 3141  wss 3929  cfv 6348  rankcrnk 9185  Scott cscott 40645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rab 3146  df-v 3493  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-iota 6307  df-fv 6356  df-scott 40646
This theorem is referenced by:  scottrankd  40658
  Copyright terms: Public domain W3C validator