Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scotteld Structured version   Visualization version   GIF version

Theorem scotteld 40656
Description: The Scott operation sends inhabited classes to inhabited sets. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypothesis
Ref Expression
scotteld.1 (𝜑 → ∃𝑥 𝑥𝐴)
Assertion
Ref Expression
scotteld (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem scotteld
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scotteld.1 . . . . . 6 (𝜑 → ∃𝑥 𝑥𝐴)
2 n0 4303 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
31, 2sylibr 236 . . . . 5 (𝜑𝐴 ≠ ∅)
43neneqd 3020 . . . 4 (𝜑 → ¬ 𝐴 = ∅)
5 scott0 9308 . . . . 5 (𝐴 = ∅ ↔ {𝑦𝐴 ∣ ∀𝑧𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅)
6 df-scott 40646 . . . . . 6 Scott 𝐴 = {𝑦𝐴 ∣ ∀𝑧𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)}
76eqeq1i 2825 . . . . 5 (Scott 𝐴 = ∅ ↔ {𝑦𝐴 ∣ ∀𝑧𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅)
85, 7bitr4i 280 . . . 4 (𝐴 = ∅ ↔ Scott 𝐴 = ∅)
94, 8sylnib 330 . . 3 (𝜑 → ¬ Scott 𝐴 = ∅)
109neqned 3022 . 2 (𝜑 → Scott 𝐴 ≠ ∅)
11 n0 4303 . 2 (Scott 𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ Scott 𝐴)
1210, 11sylib 220 1 (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wex 1779  wcel 2113  wne 3015  wral 3137  {crab 3141  wss 3929  c0 4284  cfv 6348  rankcrnk 9185  Scott cscott 40645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7574  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-r1 9186  df-rank 9187  df-scott 40646
This theorem is referenced by:  cpcolld  40668
  Copyright terms: Public domain W3C validator