MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selvffval Structured version   Visualization version   GIF version

Theorem selvffval 20324
Description: Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023.)
Hypotheses
Ref Expression
selvffval.i (𝜑𝐼𝑉)
selvffval.r (𝜑𝑅𝑊)
Assertion
Ref Expression
selvffval (𝜑 → (𝐼 selectVars 𝑅) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))))
Distinct variable groups:   𝑗,𝐼,𝑓,𝑢,𝑡,𝑐,𝑑,𝑥   𝑅,𝑗,𝑓,𝑢,𝑡,𝑐,𝑑,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑢,𝑡,𝑓,𝑗,𝑐,𝑑)   𝑉(𝑥,𝑢,𝑡,𝑓,𝑗,𝑐,𝑑)   𝑊(𝑥,𝑢,𝑡,𝑓,𝑗,𝑐,𝑑)

Proof of Theorem selvffval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-selv 20320 . . 3 selectVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))))))
21a1i 11 . 2 (𝜑 → selectVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥)))))))))
3 pweq 4548 . . . . 5 (𝑖 = 𝐼 → 𝒫 𝑖 = 𝒫 𝐼)
43adantr 483 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → 𝒫 𝑖 = 𝒫 𝐼)
5 oveq12 7158 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = (𝐼 mPoly 𝑅))
65fveq2d 6667 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = (Base‘(𝐼 mPoly 𝑅)))
7 difeq1 4085 . . . . . . . 8 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
87adantr 483 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖𝑗) = (𝐼𝑗))
9 simpr 487 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → 𝑟 = 𝑅)
108, 9oveq12d 7167 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑖𝑗) mPoly 𝑟) = ((𝐼𝑗) mPoly 𝑅))
11 oveq1 7156 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (𝑖 evalSub 𝑡) = (𝐼 evalSub 𝑡))
1211adantr 483 . . . . . . . . . . . 12 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 evalSub 𝑡) = (𝐼 evalSub 𝑡))
1312fveq1d 6665 . . . . . . . . . . 11 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑖 evalSub 𝑡)‘ran 𝑑) = ((𝐼 evalSub 𝑡)‘ran 𝑑))
1413fveq1d 6665 . . . . . . . . . 10 ((𝑖 = 𝐼𝑟 = 𝑅) → (((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓)) = (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓)))
15 simpl 485 . . . . . . . . . . 11 ((𝑖 = 𝐼𝑟 = 𝑅) → 𝑖 = 𝐼)
168, 9oveq12d 7167 . . . . . . . . . . . . . 14 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑖𝑗) mVar 𝑟) = ((𝐼𝑗) mVar 𝑅))
1716fveq1d 6665 . . . . . . . . . . . . 13 ((𝑖 = 𝐼𝑟 = 𝑅) → (((𝑖𝑗) mVar 𝑟)‘𝑥) = (((𝐼𝑗) mVar 𝑅)‘𝑥))
1817fveq2d 6667 . . . . . . . . . . . 12 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥)) = (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥)))
1918ifeq2d 4479 . . . . . . . . . . 11 ((𝑖 = 𝐼𝑟 = 𝑅) → if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))) = if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))
2015, 19mpteq12dv 5144 . . . . . . . . . 10 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥)))) = (𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥)))))
2114, 20fveq12d 6670 . . . . . . . . 9 ((𝑖 = 𝐼𝑟 = 𝑅) → ((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))
2221csbeq2dv 3883 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))
2322csbeq2dv 3883 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))) = (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))
2423csbeq2dv 3883 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))) = (𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))
2510, 24csbeq12dv 3885 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))) = ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))
266, 25mpteq12dv 5144 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥)))))) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥)))))))
274, 26mpteq12dv 5144 . . 3 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))))) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))))
2827adantl 484 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))))) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))))
29 selvffval.i . . 3 (𝜑𝐼𝑉)
3029elexd 3511 . 2 (𝜑𝐼 ∈ V)
31 selvffval.r . . 3 (𝜑𝑅𝑊)
3231elexd 3511 . 2 (𝜑𝑅 ∈ V)
3329pwexd 5273 . . 3 (𝜑 → 𝒫 𝐼 ∈ V)
3433mptexd 6980 . 2 (𝜑 → (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))) ∈ V)
352, 28, 30, 32, 34ovmpod 7295 1 (𝜑 → (𝐼 selectVars 𝑅) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  Vcvv 3491  csb 3876  cdif 3926  ifcif 4460  𝒫 cpw 4532  cmpt 5139  ran crn 5549  ccom 5552  cfv 6348  (class class class)co 7149  cmpo 7151  Basecbs 16478  algSccascl 20079   mVar cmvr 20127   mPoly cmpl 20128   evalSub ces 20279   selectVars cslv 20316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-selv 20320
This theorem is referenced by:  selvfval  20325
  Copyright terms: Public domain W3C validator