Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnsv Structured version   Visualization version   GIF version

Theorem sgnsv 29701
Description: The sign mapping. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
sgnsval.b 𝐵 = (Base‘𝑅)
sgnsval.0 0 = (0g𝑅)
sgnsval.l < = (lt‘𝑅)
sgnsval.s 𝑆 = (sgns𝑅)
Assertion
Ref Expression
sgnsv (𝑅𝑉𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
Distinct variable groups:   𝑥, 0   𝑥, <   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem sgnsv
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 sgnsval.s . 2 𝑆 = (sgns𝑅)
2 elex 3207 . . 3 (𝑅𝑉𝑅 ∈ V)
3 fveq2 6178 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
4 sgnsval.b . . . . . 6 𝐵 = (Base‘𝑅)
53, 4syl6eqr 2672 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
6 fveq2 6178 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
7 sgnsval.0 . . . . . . . . 9 0 = (0g𝑅)
86, 7syl6eqr 2672 . . . . . . . 8 (𝑟 = 𝑅 → (0g𝑟) = 0 )
98adantr 481 . . . . . . 7 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → (0g𝑟) = 0 )
109eqeq2d 2630 . . . . . 6 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → (𝑥 = (0g𝑟) ↔ 𝑥 = 0 ))
11 fveq2 6178 . . . . . . . . . 10 (𝑟 = 𝑅 → (lt‘𝑟) = (lt‘𝑅))
12 sgnsval.l . . . . . . . . . 10 < = (lt‘𝑅)
1311, 12syl6eqr 2672 . . . . . . . . 9 (𝑟 = 𝑅 → (lt‘𝑟) = < )
1413adantr 481 . . . . . . . 8 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → (lt‘𝑟) = < )
15 eqidd 2621 . . . . . . . 8 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → 𝑥 = 𝑥)
169, 14, 15breq123d 4658 . . . . . . 7 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → ((0g𝑟)(lt‘𝑟)𝑥0 < 𝑥))
1716ifbid 4099 . . . . . 6 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → if((0g𝑟)(lt‘𝑟)𝑥, 1, -1) = if( 0 < 𝑥, 1, -1))
1810, 17ifbieq2d 4102 . . . . 5 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → if(𝑥 = (0g𝑟), 0, if((0g𝑟)(lt‘𝑟)𝑥, 1, -1)) = if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))
195, 18mpteq12dva 4723 . . . 4 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g𝑟), 0, if((0g𝑟)(lt‘𝑟)𝑥, 1, -1))) = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
20 df-sgns 29700 . . . 4 sgns = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g𝑟), 0, if((0g𝑟)(lt‘𝑟)𝑥, 1, -1))))
21 fvex 6188 . . . . 5 (Base‘𝑟) ∈ V
2221mptex 6471 . . . 4 (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g𝑟), 0, if((0g𝑟)(lt‘𝑟)𝑥, 1, -1))) ∈ V
2319, 20, 22fvmpt3i 6274 . . 3 (𝑅 ∈ V → (sgns𝑅) = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
242, 23syl 17 . 2 (𝑅𝑉 → (sgns𝑅) = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
251, 24syl5eq 2666 1 (𝑅𝑉𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  Vcvv 3195  ifcif 4077   class class class wbr 4644  cmpt 4720  cfv 5876  0cc0 9921  1c1 9922  -cneg 10252  Basecbs 15838  0gc0g 16081  ltcplt 16922  sgnscsgns 29699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-sgns 29700
This theorem is referenced by:  sgnsval  29702  sgnsf  29703
  Copyright terms: Public domain W3C validator