MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sossfld Structured version   Visualization version   GIF version

Theorem sossfld 6043
Description: The base set of a strict order is contained in the field of the relation, except possibly for one element (note that ∅ Or {𝐵}). (Contributed by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
sossfld ((𝑅 Or 𝐴𝐵𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅))

Proof of Theorem sossfld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifsn 4719 . . 3 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥𝐴𝑥𝐵))
2 sotrieq 5502 . . . . . . 7 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝐵𝐴)) → (𝑥 = 𝐵 ↔ ¬ (𝑥𝑅𝐵𝐵𝑅𝑥)))
32necon2abid 3058 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝐵𝐴)) → ((𝑥𝑅𝐵𝐵𝑅𝑥) ↔ 𝑥𝐵))
43anass1rs 653 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴) ∧ 𝑥𝐴) → ((𝑥𝑅𝐵𝐵𝑅𝑥) ↔ 𝑥𝐵))
5 breldmg 5778 . . . . . . . . . 10 ((𝑥𝐴𝐵𝐴𝑥𝑅𝐵) → 𝑥 ∈ dom 𝑅)
653expia 1117 . . . . . . . . 9 ((𝑥𝐴𝐵𝐴) → (𝑥𝑅𝐵𝑥 ∈ dom 𝑅))
76ancoms 461 . . . . . . . 8 ((𝐵𝐴𝑥𝐴) → (𝑥𝑅𝐵𝑥 ∈ dom 𝑅))
8 brelrng 5811 . . . . . . . . 9 ((𝐵𝐴𝑥𝐴𝐵𝑅𝑥) → 𝑥 ∈ ran 𝑅)
983expia 1117 . . . . . . . 8 ((𝐵𝐴𝑥𝐴) → (𝐵𝑅𝑥𝑥 ∈ ran 𝑅))
107, 9orim12d 961 . . . . . . 7 ((𝐵𝐴𝑥𝐴) → ((𝑥𝑅𝐵𝐵𝑅𝑥) → (𝑥 ∈ dom 𝑅𝑥 ∈ ran 𝑅)))
11 elun 4125 . . . . . . 7 (𝑥 ∈ (dom 𝑅 ∪ ran 𝑅) ↔ (𝑥 ∈ dom 𝑅𝑥 ∈ ran 𝑅))
1210, 11syl6ibr 254 . . . . . 6 ((𝐵𝐴𝑥𝐴) → ((𝑥𝑅𝐵𝐵𝑅𝑥) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅)))
1312adantll 712 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴) ∧ 𝑥𝐴) → ((𝑥𝑅𝐵𝐵𝑅𝑥) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅)))
144, 13sylbird 262 . . . 4 (((𝑅 Or 𝐴𝐵𝐴) ∧ 𝑥𝐴) → (𝑥𝐵𝑥 ∈ (dom 𝑅 ∪ ran 𝑅)))
1514expimpd 456 . . 3 ((𝑅 Or 𝐴𝐵𝐴) → ((𝑥𝐴𝑥𝐵) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅)))
161, 15syl5bi 244 . 2 ((𝑅 Or 𝐴𝐵𝐴) → (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅)))
1716ssrdv 3973 1 ((𝑅 Or 𝐴𝐵𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  wcel 2114  wne 3016  cdif 3933  cun 3934  wss 3936  {csn 4567   class class class wbr 5066   Or wor 5473  dom cdm 5555  ran crn 5556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-po 5474  df-so 5475  df-cnv 5563  df-dm 5565  df-rn 5566
This theorem is referenced by:  sofld  6044  soex  7626
  Copyright terms: Public domain W3C validator