MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotrieq Structured version   Visualization version   GIF version

Theorem sotrieq 4976
Description: Trichotomy law for strict order relation. (Contributed by NM, 9-Apr-1996.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
sotrieq ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))

Proof of Theorem sotrieq
StepHypRef Expression
1 sonr 4970 . . . . . . 7 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
21adantrr 748 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ 𝐵𝑅𝐵)
3 pm1.2 533 . . . . . 6 ((𝐵𝑅𝐵𝐵𝑅𝐵) → 𝐵𝑅𝐵)
42, 3nsyl 133 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐵𝐵𝑅𝐵))
5 breq2 4581 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝑅𝐵𝐵𝑅𝐶))
6 breq1 4580 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝑅𝐵𝐶𝑅𝐵))
75, 6orbi12d 741 . . . . . 6 (𝐵 = 𝐶 → ((𝐵𝑅𝐵𝐵𝑅𝐵) ↔ (𝐵𝑅𝐶𝐶𝑅𝐵)))
87notbid 306 . . . . 5 (𝐵 = 𝐶 → (¬ (𝐵𝑅𝐵𝐵𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))
94, 8syl5ibcom 233 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))
109con2d 127 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐵) → ¬ 𝐵 = 𝐶))
11 solin 4972 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
12 3orass 1033 . . . . . 6 ((𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)))
1311, 12sylib 206 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)))
14 or12 543 . . . . 5 ((𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)) ↔ (𝐵 = 𝐶 ∨ (𝐵𝑅𝐶𝐶𝑅𝐵)))
1513, 14sylib 206 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 ∨ (𝐵𝑅𝐶𝐶𝑅𝐵)))
1615ord 390 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (¬ 𝐵 = 𝐶 → (𝐵𝑅𝐶𝐶𝑅𝐵)))
1710, 16impbid 200 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐵) ↔ ¬ 𝐵 = 𝐶))
1817con2bid 342 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382  w3o 1029   = wceq 1474  wcel 1976   class class class wbr 4577   Or wor 4948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-br 4578  df-po 4949  df-so 4950
This theorem is referenced by:  sotrieq2  4977  sossfld  5485  soisores  6455  soisoi  6456  weniso  6482  wemapsolem  8315  distrlem4pr  9704  addcanpr  9724  sqgt0sr  9783  lttri2  9971  xrlttri2  11810  xrltne  11829  soseq  30801
  Copyright terms: Public domain W3C validator