MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrelrel Structured version   Visualization version   GIF version

Theorem ssrelrel 5129
Description: A subclass relationship determined by ordered triples. Use relrelss 5559 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssrelrel (𝐴 ⊆ ((V × V) × V) → (𝐴𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem ssrelrel
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssel 3558 . . . 4 (𝐴𝐵 → (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵))
21alrimiv 1841 . . 3 (𝐴𝐵 → ∀𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵))
32alrimivv 1842 . 2 (𝐴𝐵 → ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵))
4 elvvv 5088 . . . . . . . 8 (𝑤 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
5 eleq1 2672 . . . . . . . . . . . . . 14 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴))
6 eleq1 2672 . . . . . . . . . . . . . 14 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐵 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵))
75, 6imbi12d 332 . . . . . . . . . . . . 13 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → ((𝑤𝐴𝑤𝐵) ↔ (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
87biimprcd 238 . . . . . . . . . . . 12 ((⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
98alimi 1729 . . . . . . . . . . 11 (∀𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → ∀𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
10 19.23v 1888 . . . . . . . . . . 11 (∀𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)) ↔ (∃𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
119, 10sylib 206 . . . . . . . . . 10 (∀𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (∃𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
12112alimi 1730 . . . . . . . . 9 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → ∀𝑥𝑦(∃𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
13 19.23vv 1889 . . . . . . . . 9 (∀𝑥𝑦(∃𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)) ↔ (∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
1412, 13sylib 206 . . . . . . . 8 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
154, 14syl5bi 230 . . . . . . 7 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (𝑤 ∈ ((V × V) × V) → (𝑤𝐴𝑤𝐵)))
1615com23 83 . . . . . 6 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (𝑤𝐴 → (𝑤 ∈ ((V × V) × V) → 𝑤𝐵)))
1716a2d 29 . . . . 5 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → ((𝑤𝐴𝑤 ∈ ((V × V) × V)) → (𝑤𝐴𝑤𝐵)))
1817alimdv 1831 . . . 4 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (∀𝑤(𝑤𝐴𝑤 ∈ ((V × V) × V)) → ∀𝑤(𝑤𝐴𝑤𝐵)))
19 dfss2 3553 . . . 4 (𝐴 ⊆ ((V × V) × V) ↔ ∀𝑤(𝑤𝐴𝑤 ∈ ((V × V) × V)))
20 dfss2 3553 . . . 4 (𝐴𝐵 ↔ ∀𝑤(𝑤𝐴𝑤𝐵))
2118, 19, 203imtr4g 283 . . 3 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (𝐴 ⊆ ((V × V) × V) → 𝐴𝐵))
2221com12 32 . 2 (𝐴 ⊆ ((V × V) × V) → (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → 𝐴𝐵))
233, 22impbid2 214 1 (𝐴 ⊆ ((V × V) × V) → (𝐴𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wal 1472   = wceq 1474  wex 1694  wcel 1976  Vcvv 3169  wss 3536  cop 4127   × cxp 5023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pr 4825
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-rab 2901  df-v 3171  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-sn 4122  df-pr 4124  df-op 4128  df-opab 4635  df-xp 5031
This theorem is referenced by:  eqrelrel  5130
  Copyright terms: Public domain W3C validator