![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl331anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl12anc.1 | ⊢ (𝜑 → 𝜓) |
syl12anc.2 | ⊢ (𝜑 → 𝜒) |
syl12anc.3 | ⊢ (𝜑 → 𝜃) |
syl22anc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl133anc.7 | ⊢ (𝜑 → 𝜎) |
syl331anc.8 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ 𝜎) → 𝜌) |
Ref | Expression |
---|---|
syl331anc | ⊢ (𝜑 → 𝜌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl12anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl12anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl12anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl22anc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
7 | 4, 5, 6 | 3jca 1315 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂 ∧ 𝜁)) |
8 | syl133anc.7 | . 2 ⊢ (𝜑 → 𝜎) | |
9 | syl331anc.8 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ 𝜎) → 𝜌) | |
10 | 1, 2, 3, 7, 8, 9 | syl311anc 1421 | 1 ⊢ (𝜑 → 𝜌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: syl332anc 1438 syl333anc 1439 qredeu 15463 brbtwn2 25873 3atlem4 35160 3atlem6 35162 llnexchb2 35543 osumcllem9N 35638 cdlemd4 35876 cdleme26fALTN 36037 cdleme26f 36038 cdleme36m 36136 cdlemg17b 36337 cdlemg17h 36343 cdlemk38 36590 cdlemk53b 36631 cdlemkyyN 36637 cdlemk43N 36638 |
Copyright terms: Public domain | W3C validator |