MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl331anc Structured version   Visualization version   GIF version

Theorem syl331anc 1348
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl12anc.1 (𝜑𝜓)
syl12anc.2 (𝜑𝜒)
syl12anc.3 (𝜑𝜃)
syl22anc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl133anc.7 (𝜑𝜎)
syl331anc.8 (((𝜓𝜒𝜃) ∧ (𝜏𝜂𝜁) ∧ 𝜎) → 𝜌)
Assertion
Ref Expression
syl331anc (𝜑𝜌)

Proof of Theorem syl331anc
StepHypRef Expression
1 syl12anc.1 . 2 (𝜑𝜓)
2 syl12anc.2 . 2 (𝜑𝜒)
3 syl12anc.3 . 2 (𝜑𝜃)
4 syl22anc.4 . . 3 (𝜑𝜏)
5 syl23anc.5 . . 3 (𝜑𝜂)
6 syl33anc.6 . . 3 (𝜑𝜁)
74, 5, 63jca 1240 . 2 (𝜑 → (𝜏𝜂𝜁))
8 syl133anc.7 . 2 (𝜑𝜎)
9 syl331anc.8 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂𝜁) ∧ 𝜎) → 𝜌)
101, 2, 3, 7, 8, 9syl311anc 1337 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1038
This theorem is referenced by:  syl332anc  1354  syl333anc  1355  qredeu  15291  brbtwn2  25680  3atlem4  34238  3atlem6  34240  llnexchb2  34621  osumcllem9N  34716  cdlemd4  34954  cdleme26fALTN  35116  cdleme26f  35117  cdleme36m  35215  cdlemg17b  35416  cdlemg17h  35422  cdlemk38  35669  cdlemk53b  35710  cdlemkyyN  35716  cdlemk43N  35717
  Copyright terms: Public domain W3C validator