MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrn0 Structured version   Visualization version   GIF version

Theorem uhgrn0 26852
Description: An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 15-Dec-2020.)
Hypothesis
Ref Expression
uhgrfun.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgrn0 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ≠ ∅)

Proof of Theorem uhgrn0
StepHypRef Expression
1 eqid 2821 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
2 uhgrfun.e . . . . . . 7 𝐸 = (iEdg‘𝐺)
31, 2uhgrf 26847 . . . . . 6 (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
4 fndm 6455 . . . . . . 7 (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴)
54feq2d 6500 . . . . . 6 (𝐸 Fn 𝐴 → (𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
63, 5syl5ibcom 247 . . . . 5 (𝐺 ∈ UHGraph → (𝐸 Fn 𝐴𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
76imp 409 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
87ffvelrnda 6851 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) ∧ 𝐹𝐴) → (𝐸𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
983impa 1106 . 2 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
10 eldifsni 4722 . 2 ((𝐸𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → (𝐸𝐹) ≠ ∅)
119, 10syl 17 1 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  cdif 3933  c0 4291  𝒫 cpw 4539  {csn 4567  dom cdm 5555   Fn wfn 6350  wf 6351  cfv 6355  Vtxcvtx 26781  iEdgciedg 26782  UHGraphcuhgr 26841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-uhgr 26843
This theorem is referenced by:  lpvtx  26853  subgruhgredgd  27066
  Copyright terms: Public domain W3C validator