Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unipreima Structured version   Visualization version   GIF version

Theorem unipreima 29279
Description: Preimage of a class union. (Contributed by Thierry Arnoux, 7-Feb-2017.)
Assertion
Ref Expression
unipreima (Fun 𝐹 → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem unipreima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funfn 5879 . 2 (Fun 𝐹𝐹 Fn dom 𝐹)
2 r19.42v 3089 . . . . . . 7 (∃𝑥𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥))
32bicomi 214 . . . . . 6 ((𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥) ↔ ∃𝑥𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥))
43a1i 11 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥) ↔ ∃𝑥𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥)))
5 eluni2 4411 . . . . . . 7 ((𝐹𝑦) ∈ 𝐴 ↔ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥)
65anbi2i 729 . . . . . 6 ((𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥))
76a1i 11 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥)))
8 elpreima 6294 . . . . . 6 (𝐹 Fn dom 𝐹 → (𝑦 ∈ (𝐹𝑥) ↔ (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥)))
98rexbidv 3050 . . . . 5 (𝐹 Fn dom 𝐹 → (∃𝑥𝐴 𝑦 ∈ (𝐹𝑥) ↔ ∃𝑥𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥)))
104, 7, 93bitr4d 300 . . . 4 (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝐴) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐹𝑥)))
11 elpreima 6294 . . . 4 (𝐹 Fn dom 𝐹 → (𝑦 ∈ (𝐹 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝐴)))
12 eliun 4495 . . . . 5 (𝑦 𝑥𝐴 (𝐹𝑥) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐹𝑥))
1312a1i 11 . . . 4 (𝐹 Fn dom 𝐹 → (𝑦 𝑥𝐴 (𝐹𝑥) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐹𝑥)))
1410, 11, 133bitr4d 300 . . 3 (𝐹 Fn dom 𝐹 → (𝑦 ∈ (𝐹 𝐴) ↔ 𝑦 𝑥𝐴 (𝐹𝑥)))
1514eqrdv 2624 . 2 (𝐹 Fn dom 𝐹 → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
161, 15sylbi 207 1 (Fun 𝐹 → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wrex 2913   cuni 4407   ciun 4490  ccnv 5078  dom cdm 5079  cima 5082  Fun wfun 5844   Fn wfn 5845  cfv 5850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-fv 5858
This theorem is referenced by:  imambfm  30097  dstrvprob  30306
  Copyright terms: Public domain W3C validator