MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrushgr Structured version   Visualization version   GIF version

Theorem uspgrushgr 26962
Description: A simple pseudograph is an undirected simple hypergraph. (Contributed by AV, 19-Jan-2020.) (Revised by AV, 15-Oct-2020.)
Assertion
Ref Expression
uspgrushgr (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph)

Proof of Theorem uspgrushgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2823 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2isuspgr 26939 . . . 4 (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
4 ssrab2 4058 . . . . 5 {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})
5 f1ss 6582 . . . . 5 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}))
64, 5mpan2 689 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}))
73, 6syl6bi 255 . . 3 (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})))
81, 2isushgr 26848 . . 3 (𝐺 ∈ USPGraph → (𝐺 ∈ USHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})))
97, 8sylibrd 261 . 2 (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph))
109pm2.43i 52 1 (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  {crab 3144  cdif 3935  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569   class class class wbr 5068  dom cdm 5557  1-1wf1 6354  cfv 6357  cle 10678  2c2 11695  chash 13693  Vtxcvtx 26783  iEdgciedg 26784  USHGraphcushgr 26844  USPGraphcuspgr 26935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-nul 5212
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fv 6365  df-ushgr 26846  df-uspgr 26937
This theorem is referenced by:  uspgrupgrushgr  26964  usgredgedg  27014  vtxdusgrfvedg  27275  1loopgrvd2  27287  isomuspgr  44006
  Copyright terms: Public domain W3C validator