MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdg0v Structured version   Visualization version   GIF version

Theorem vtxdg0v 27257
Description: The degree of a vertex in the null graph is zero (or anything else), because there are no vertices. (Contributed by AV, 11-Dec-2020.)
Hypothesis
Ref Expression
vtxdgf.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
vtxdg0v ((𝐺 = ∅ ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = 0)

Proof of Theorem vtxdg0v
StepHypRef Expression
1 vtxdgf.v . . . . 5 𝑉 = (Vtx‘𝐺)
21eleq2i 2906 . . . 4 (𝑈𝑉𝑈 ∈ (Vtx‘𝐺))
3 fveq2 6672 . . . . . 6 (𝐺 = ∅ → (Vtx‘𝐺) = (Vtx‘∅))
4 vtxval0 26826 . . . . . 6 (Vtx‘∅) = ∅
53, 4syl6eq 2874 . . . . 5 (𝐺 = ∅ → (Vtx‘𝐺) = ∅)
65eleq2d 2900 . . . 4 (𝐺 = ∅ → (𝑈 ∈ (Vtx‘𝐺) ↔ 𝑈 ∈ ∅))
72, 6syl5bb 285 . . 3 (𝐺 = ∅ → (𝑈𝑉𝑈 ∈ ∅))
8 noel 4298 . . . 4 ¬ 𝑈 ∈ ∅
98pm2.21i 119 . . 3 (𝑈 ∈ ∅ → ((VtxDeg‘𝐺)‘𝑈) = 0)
107, 9syl6bi 255 . 2 (𝐺 = ∅ → (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = 0))
1110imp 409 1 ((𝐺 = ∅ ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  c0 4293  cfv 6357  0cc0 10539  Vtxcvtx 26783  VtxDegcvtxdg 27249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-slot 16489  df-base 16491  df-vtx 26785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator