Mathbox for Stanislas Polu < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfximgfd Structured version   Visualization version   GIF version

Theorem wfximgfd 37984
 Description: The value of a function on its domain is in the image of the function. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
wfximgfd.1 (𝜑𝐶𝐴)
wfximgfd.2 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
wfximgfd (𝜑 → (𝐹𝐶) ∈ (𝐹𝐴))

Proof of Theorem wfximgfd
StepHypRef Expression
1 wfximgfd.2 . . 3 (𝜑𝐹:𝐴𝐵)
2 ffn 6012 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 17 . 2 (𝜑𝐹 Fn 𝐴)
4 ssid 3609 . . 3 𝐴𝐴
54a1i 11 . 2 (𝜑𝐴𝐴)
6 wfximgfd.1 . 2 (𝜑𝐶𝐴)
7 fnfvima 6461 . 2 ((𝐹 Fn 𝐴𝐴𝐴𝐶𝐴) → (𝐹𝐶) ∈ (𝐹𝐴))
83, 5, 6, 7syl3anc 1323 1 (𝜑 → (𝐹𝐶) ∈ (𝐹𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1987   ⊆ wss 3560   “ cima 5087   Fn wfn 5852  ⟶wf 5853  ‘cfv 5857 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-fv 5865 This theorem is referenced by:  imo72b2lem0  37986
 Copyright terms: Public domain W3C validator