Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > ax12 | Unicode version |
Description: Axiom of Quantifier Introduction. Axiom scheme C9' in [Megill] p. 448 (p. 16 of the preprint). (Contributed by Mario Carneiro, 10-Oct-2014.) |
Ref | Expression |
---|---|
ax12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wv 64 | . . . . . . 7 | |
2 | wv 64 | . . . . . . 7 | |
3 | 1, 2 | weqi 76 | . . . . . 6 |
4 | wv 64 | . . . . . . 7 | |
5 | 3, 4 | ax-17 105 | . . . . . 6 |
6 | 3, 5 | isfree 188 | . . . . 5 |
7 | wnot 138 | . . . . . 6 | |
8 | wal 134 | . . . . . . 7 | |
9 | wv 64 | . . . . . . . . 9 | |
10 | 9, 2 | weqi 76 | . . . . . . . 8 |
11 | 10 | wl 66 | . . . . . . 7 |
12 | 8, 11 | wc 50 | . . . . . 6 |
13 | 7, 12 | wc 50 | . . . . 5 |
14 | 6, 13 | adantr 55 | . . . 4 |
15 | 14 | ex 158 | . . 3 |
16 | 9, 1 | weqi 76 | . . . . . 6 |
17 | 16 | wl 66 | . . . . 5 |
18 | 8, 17 | wc 50 | . . . 4 |
19 | 7, 18 | wc 50 | . . 3 |
20 | 15, 19 | adantr 55 | . 2 |
21 | 20 | ex 158 | 1 |
Colors of variables: type var term |
Syntax hints: tv 1 ht 2 hb 3 kc 5 kl 6 ke 7 kt 8 kbr 9 wffMMJ2 11 tne 120 tim 121 tal 122 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-eta 177 |
This theorem depends on definitions: df-ov 73 df-al 126 df-fal 127 df-an 128 df-im 129 df-not 130 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |