HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  ax12 GIF version

Theorem ax12 215
Description: Axiom of Quantifier Introduction. Axiom scheme C9' in [Megill] p. 448 (p. 16 of the preprint). (Contributed by Mario Carneiro, 10-Oct-2014.)
Assertion
Ref Expression
ax12 ⊤⊧[(¬ (λz:α [z:α = x:α])) ⇒ [(¬ (λz:α [z:α = y:α])) ⇒ [[x:α = y:α] ⇒ (λz:α [x:α = y:α])]]]
Distinct variable groups:   x,z   y,z   α,z

Proof of Theorem ax12
Dummy variable p is distinct from all other variables.
StepHypRef Expression
1 wv 64 . . . . . . 7 x:α:α
2 wv 64 . . . . . . 7 y:α:α
31, 2weqi 76 . . . . . 6 [x:α = y:α]:∗
4 wv 64 . . . . . . 7 p:α:α
53, 4ax-17 105 . . . . . 6 ⊤⊧[(λz:α [x:α = y:α]p:α) = [x:α = y:α]]
63, 5isfree 188 . . . . 5 ⊤⊧[[x:α = y:α] ⇒ (λz:α [x:α = y:α])]
7 wnot 138 . . . . . 6 ¬ :(∗ → ∗)
8 wal 134 . . . . . . 7 :((α → ∗) → ∗)
9 wv 64 . . . . . . . . 9 z:α:α
109, 2weqi 76 . . . . . . . 8 [z:α = y:α]:∗
1110wl 66 . . . . . . 7 λz:α [z:α = y:α]:(α → ∗)
128, 11wc 50 . . . . . 6 (λz:α [z:α = y:α]):∗
137, 12wc 50 . . . . 5 (¬ (λz:α [z:α = y:α])):∗
146, 13adantr 55 . . . 4 (⊤, (¬ (λz:α [z:α = y:α])))⊧[[x:α = y:α] ⇒ (λz:α [x:α = y:α])]
1514ex 158 . . 3 ⊤⊧[(¬ (λz:α [z:α = y:α])) ⇒ [[x:α = y:α] ⇒ (λz:α [x:α = y:α])]]
169, 1weqi 76 . . . . . 6 [z:α = x:α]:∗
1716wl 66 . . . . 5 λz:α [z:α = x:α]:(α → ∗)
188, 17wc 50 . . . 4 (λz:α [z:α = x:α]):∗
197, 18wc 50 . . 3 (¬ (λz:α [z:α = x:α])):∗
2015, 19adantr 55 . 2 (⊤, (¬ (λz:α [z:α = x:α])))⊧[(¬ (λz:α [z:α = y:α])) ⇒ [[x:α = y:α] ⇒ (λz:α [x:α = y:α])]]
2120ex 158 1 ⊤⊧[(¬ (λz:α [z:α = x:α])) ⇒ [(¬ (λz:α [z:α = y:α])) ⇒ [[x:α = y:α] ⇒ (λz:α [x:α = y:α])]]]
Colors of variables: type var term
Syntax hints:  tv 1  ht 2  hb 3  kc 5  λkl 6   = ke 7  kt 8  [kbr 9  wffMMJ2 11  ¬ tne 120  tim 121  tal 122
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113  ax-eta 177
This theorem depends on definitions:  df-ov 73  df-al 126  df-fal 127  df-an 128  df-im 129  df-not 130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator