| Step | Hyp | Ref
| Expression |
| 1 | | wv 64 |
. . . . . . 7
⊢ x:α:α |
| 2 | | wv 64 |
. . . . . . 7
⊢ y:α:α |
| 3 | 1, 2 | weqi 76 |
. . . . . 6
⊢ [x:α =
y:α]:∗ |
| 4 | | wv 64 |
. . . . . . 7
⊢ p:α:α |
| 5 | 3, 4 | ax-17 105 |
. . . . . 6
⊢
⊤⊧[(λz:α
[x:α = y:α]p:α) =
[x:α = y:α]] |
| 6 | 3, 5 | isfree 188 |
. . . . 5
⊢
⊤⊧[[x:α = y:α]
⇒ (∀λz:α
[x:α = y:α])] |
| 7 | | wnot 138 |
. . . . . 6
⊢ ¬ :(∗
→ ∗) |
| 8 | | wal 134 |
. . . . . . 7
⊢ ∀:((α
→ ∗) → ∗) |
| 9 | | wv 64 |
. . . . . . . . 9
⊢ z:α:α |
| 10 | 9, 2 | weqi 76 |
. . . . . . . 8
⊢ [z:α =
y:α]:∗ |
| 11 | 10 | wl 66 |
. . . . . . 7
⊢
λz:α [z:α =
y:α]:(α → ∗) |
| 12 | 8, 11 | wc 50 |
. . . . . 6
⊢ (∀λz:α
[z:α = y:α]):∗ |
| 13 | 7, 12 | wc 50 |
. . . . 5
⊢ (¬ (∀λz:α
[z:α = y:α])):∗ |
| 14 | 6, 13 | adantr 55 |
. . . 4
⊢ (⊤, (¬
(∀λz:α
[z:α = y:α])))⊧[[x:α =
y:α] ⇒ (∀λz:α
[x:α = y:α])] |
| 15 | 14 | ex 158 |
. . 3
⊢
⊤⊧[(¬ (∀λz:α
[z:α = y:α]))
⇒ [[x:α = y:α]
⇒ (∀λz:α
[x:α = y:α])]] |
| 16 | 9, 1 | weqi 76 |
. . . . . 6
⊢ [z:α =
x:α]:∗ |
| 17 | 16 | wl 66 |
. . . . 5
⊢
λz:α [z:α =
x:α]:(α → ∗) |
| 18 | 8, 17 | wc 50 |
. . . 4
⊢ (∀λz:α
[z:α = x:α]):∗ |
| 19 | 7, 18 | wc 50 |
. . 3
⊢ (¬ (∀λz:α
[z:α = x:α])):∗ |
| 20 | 15, 19 | adantr 55 |
. 2
⊢ (⊤, (¬
(∀λz:α
[z:α = x:α])))⊧[(¬ (∀λz:α
[z:α = y:α]))
⇒ [[x:α = y:α]
⇒ (∀λz:α
[x:α = y:α])]] |
| 21 | 20 | ex 158 |
1
⊢
⊤⊧[(¬ (∀λz:α
[z:α = x:α]))
⇒ [(¬ (∀λz:α
[z:α = y:α]))
⇒ [[x:α = y:α]
⇒ (∀λz:α
[x:α = y:α])]]] |