| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > isfree | Unicode version | ||
| Description: Derive the metamath "is free" predicate in terms of the HOL "is free" predicate. (Contributed by Mario Carneiro, 9-Oct-2014.) |
| Ref | Expression |
|---|---|
| alnex1.1 |
|
| isfree.2 |
|
| Ref | Expression |
|---|---|
| isfree |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex1.1 |
. . . . 5
| |
| 2 | 1 | id 25 |
. . . 4
|
| 3 | isfree.2 |
. . . 4
| |
| 4 | 2, 3 | alrimi 182 |
. . 3
|
| 5 | 3 | ax-cb1 29 |
. . 3
|
| 6 | 4, 5 | adantl 56 |
. 2
|
| 7 | 6 | ex 158 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-eta 177 |
| This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 |
| This theorem is referenced by: ax6 208 ax12 215 ax17m 218 |
| Copyright terms: Public domain | W3C validator |