HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  ax2 Unicode version

Theorem ax2 204
Description: Axiom Frege. Axiom A2 of [Margaris] p. 49. (Contributed by Mario Carneiro, 9-Oct-2014.)
Hypotheses
Ref Expression
ax1.1 |- R:*
ax1.2 |- S:*
ax2.3 |- T:*
Assertion
Ref Expression
ax2 |- T. |= [[R ==> [S ==> T]] ==> [[R ==> S] ==> [R ==> T]]]

Proof of Theorem ax2
StepHypRef Expression
1 ax2.3 . . . . . 6 |- T:*
2 ax1.2 . . . . . . 7 |- S:*
3 wim 137 . . . . . . . . . 10 |- ==> :(* -> (* -> *))
4 ax1.1 . . . . . . . . . 10 |- R:*
53, 2, 1wov 72 . . . . . . . . . 10 |- [S ==> T]:*
63, 4, 5wov 72 . . . . . . . . 9 |- [R ==> [S ==> T]]:*
73, 4, 2wov 72 . . . . . . . . 9 |- [R ==> S]:*
86, 7wct 48 . . . . . . . 8 |- ([R ==> [S ==> T]], [R ==> S]):*
98, 4simpr 23 . . . . . . 7 |- (([R ==> [S ==> T]], [R ==> S]), R) |= R
108, 4simpl 22 . . . . . . . 8 |- (([R ==> [S ==> T]], [R ==> S]), R) |= ([R ==> [S ==> T]], [R ==> S])
1110simprd 38 . . . . . . 7 |- (([R ==> [S ==> T]], [R ==> S]), R) |= [R ==> S]
122, 9, 11mpd 156 . . . . . 6 |- (([R ==> [S ==> T]], [R ==> S]), R) |= S
1310simpld 37 . . . . . . 7 |- (([R ==> [S ==> T]], [R ==> S]), R) |= [R ==> [S ==> T]]
145, 9, 13mpd 156 . . . . . 6 |- (([R ==> [S ==> T]], [R ==> S]), R) |= [S ==> T]
151, 12, 14mpd 156 . . . . 5 |- (([R ==> [S ==> T]], [R ==> S]), R) |= T
1615ex 158 . . . 4 |- ([R ==> [S ==> T]], [R ==> S]) |= [R ==> T]
1716ex 158 . . 3 |- [R ==> [S ==> T]] |= [[R ==> S] ==> [R ==> T]]
18 wtru 43 . . 3 |- T.:*
1917, 18adantl 56 . 2 |- (T., [R ==> [S ==> T]]) |= [[R ==> S] ==> [R ==> T]]
2019ex 158 1 |- T. |= [[R ==> [S ==> T]] ==> [[R ==> S] ==> [R ==> T]]]
Colors of variables: type var term
Syntax hints:  *hb 3  T.kt 8  [kbr 9  kct 10   |= wffMMJ2 11  wffMMJ2t 12   ==> tim 121
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113
This theorem depends on definitions:  df-ov 73  df-an 128  df-im 129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator