Higher-Order Logic Explorer |
< Previous
Wrap >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > axun | Unicode version |
Description: Axiom of Union. An axiom of Zermelo-Fraenkel set theory. (Contributed by Mario Carneiro, 10-Oct-2014.) |
Ref | Expression |
---|---|
axun.1 |
Ref | Expression |
---|---|
axun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wtru 43 | . . . . . 6 | |
2 | wex 139 | . . . . . . 7 | |
3 | wan 136 | . . . . . . . . 9 | |
4 | wv 64 | . . . . . . . . . 10 | |
5 | wv 64 | . . . . . . . . . 10 | |
6 | 4, 5 | wc 50 | . . . . . . . . 9 |
7 | axun.1 | . . . . . . . . . 10 | |
8 | 7, 4 | wc 50 | . . . . . . . . 9 |
9 | 3, 6, 8 | wov 72 | . . . . . . . 8 |
10 | 9 | wl 66 | . . . . . . 7 |
11 | 2, 10 | wc 50 | . . . . . 6 |
12 | 1, 11 | wct 48 | . . . . 5 |
13 | 12 | trud 27 | . . . 4 |
14 | 13 | ex 158 | . . 3 |
15 | 14 | alrimiv 151 | . 2 |
16 | wal 134 | . . . 4 | |
17 | wim 137 | . . . . . 6 | |
18 | wv 64 | . . . . . . 7 | |
19 | 18, 5 | wc 50 | . . . . . 6 |
20 | 17, 11, 19 | wov 72 | . . . . 5 |
21 | 20 | wl 66 | . . . 4 |
22 | 16, 21 | wc 50 | . . 3 |
23 | 1 | wl 66 | . . 3 |
24 | 18, 23 | weqi 76 | . . . . . . . . 9 |
25 | 24 | id 25 | . . . . . . . 8 |
26 | 18, 5, 25 | ceq1 89 | . . . . . . 7 |
27 | 1, 5, 24 | a17i 106 | . . . . . . 7 |
28 | 19, 26, 27 | eqtri 95 | . . . . . 6 |
29 | 17, 11, 19, 28 | oveq2 101 | . . . . 5 |
30 | 20, 29 | leq 91 | . . . 4 |
31 | 16, 21, 30 | ceq2 90 | . . 3 |
32 | 22, 23, 31 | cla4ev 169 | . 2 |
33 | 15, 32 | syl 16 | 1 |
Colors of variables: type var term |
Syntax hints: tv 1 ht 2 hb 3 kc 5 kl 6 ke 7 kt 8 kbr 9 kct 10 wffMMJ2 11 wffMMJ2t 12 tan 119 tim 121 tal 122 tex 123 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 df-ex 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |