Higher-Order Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HOLE Home  >  Th. List  >  wan Unicode version

Theorem wan 136
 Description: Conjunction type. (Contributed by Mario Carneiro, 8-Oct-2014.)
Assertion
Ref Expression
wan

Proof of Theorem wan
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wv 64 . . . . . . 7
2 wv 64 . . . . . . 7
3 wv 64 . . . . . . 7
41, 2, 3wov 72 . . . . . 6
54wl 66 . . . . 5
6 wtru 43 . . . . . . 7
71, 6, 6wov 72 . . . . . 6
87wl 66 . . . . 5
95, 8weqi 76 . . . 4
109wl 66 . . 3
1110wl 66 . 2
12 df-an 128 . 2
1311, 12eqtypri 81 1
 Colors of variables: type var term Syntax hints:  tv 1   ht 2  hb 3  kl 6   ke 7  kt 8  kbr 9  wffMMJ2t 12   tan 119 This theorem was proved from axioms:  ax-cb1 29  ax-weq 40  ax-refl 42  ax-wv 63  ax-wl 65  ax-wov 71  ax-eqtypri 80 This theorem depends on definitions:  df-an 128 This theorem is referenced by:  wim  137  imval  146  anval  148  dfan2  154  hbct  155  ex  158  axrep  220  axun  222
 Copyright terms: Public domain W3C validator