| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > wan | Unicode version | ||
| Description: Conjunction type. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| wan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wv 64 |
. . . . . . 7
| |
| 2 | wv 64 |
. . . . . . 7
| |
| 3 | wv 64 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | wov 72 |
. . . . . 6
|
| 5 | 4 | wl 66 |
. . . . 5
|
| 6 | wtru 43 |
. . . . . . 7
| |
| 7 | 1, 6, 6 | wov 72 |
. . . . . 6
|
| 8 | 7 | wl 66 |
. . . . 5
|
| 9 | 5, 8 | weqi 76 |
. . . 4
|
| 10 | 9 | wl 66 |
. . 3
|
| 11 | 10 | wl 66 |
. 2
|
| 12 | df-an 128 |
. 2
| |
| 13 | 11, 12 | eqtypri 81 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-cb1 29 ax-weq 40 ax-refl 42 ax-wv 63 ax-wl 65 ax-wov 71 ax-eqtypri 80 |
| This theorem depends on definitions: df-an 128 |
| This theorem is referenced by: wim 137 imval 146 anval 148 dfan2 154 hbct 155 ex 158 axrep 220 axun 222 |
| Copyright terms: Public domain | W3C validator |