Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > wan | Unicode version |
Description: Conjunction type. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
wan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wv 64 | . . . . . . 7 | |
2 | wv 64 | . . . . . . 7 | |
3 | wv 64 | . . . . . . 7 | |
4 | 1, 2, 3 | wov 72 | . . . . . 6 |
5 | 4 | wl 66 | . . . . 5 |
6 | wtru 43 | . . . . . . 7 | |
7 | 1, 6, 6 | wov 72 | . . . . . 6 |
8 | 7 | wl 66 | . . . . 5 |
9 | 5, 8 | weqi 76 | . . . 4 |
10 | 9 | wl 66 | . . 3 |
11 | 10 | wl 66 | . 2 |
12 | df-an 128 | . 2 | |
13 | 11, 12 | eqtypri 81 | 1 |
Colors of variables: type var term |
Syntax hints: tv 1 ht 2 hb 3 kl 6 ke 7 kt 8 kbr 9 wffMMJ2t 12 tan 119 |
This theorem was proved from axioms: ax-cb1 29 ax-weq 40 ax-refl 42 ax-wv 63 ax-wl 65 ax-wov 71 ax-eqtypri 80 |
This theorem depends on definitions: df-an 128 |
This theorem is referenced by: wim 137 imval 146 anval 148 dfan2 154 hbct 155 ex 158 axrep 220 axun 222 |
Copyright terms: Public domain | W3C validator |