| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > axpow | Unicode version | ||
| Description: Axiom of Power Sets. An axiom of Zermelo-Fraenkel set theory. (Contributed by Mario Carneiro, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| axpow.1 |
|
| Ref | Expression |
|---|---|
| axpow |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wtru 43 |
. . . . 5
| |
| 2 | wal 134 |
. . . . . 6
| |
| 3 | wim 137 |
. . . . . . . 8
| |
| 4 | wv 64 |
. . . . . . . . 9
| |
| 5 | wv 64 |
. . . . . . . . 9
| |
| 6 | 4, 5 | wc 50 |
. . . . . . . 8
|
| 7 | axpow.1 |
. . . . . . . . 9
| |
| 8 | 7, 5 | wc 50 |
. . . . . . . 8
|
| 9 | 3, 6, 8 | wov 72 |
. . . . . . 7
|
| 10 | 9 | wl 66 |
. . . . . 6
|
| 11 | 2, 10 | wc 50 |
. . . . 5
|
| 12 | 1, 11 | simpl 22 |
. . . 4
|
| 13 | 12 | ex 158 |
. . 3
|
| 14 | 13 | alrimiv 151 |
. 2
|
| 15 | wal 134 |
. . . 4
| |
| 16 | wv 64 |
. . . . . . 7
| |
| 17 | 16, 4 | wc 50 |
. . . . . 6
|
| 18 | 3, 11, 17 | wov 72 |
. . . . 5
|
| 19 | 18 | wl 66 |
. . . 4
|
| 20 | 15, 19 | wc 50 |
. . 3
|
| 21 | 1 | wl 66 |
. . 3
|
| 22 | 16, 21 | weqi 76 |
. . . . . . . . 9
|
| 23 | 22 | id 25 |
. . . . . . . 8
|
| 24 | 16, 4, 23 | ceq1 89 |
. . . . . . 7
|
| 25 | wv 64 |
. . . . . . . . . . 11
| |
| 26 | 25, 4 | weqi 76 |
. . . . . . . . . 10
|
| 27 | 26, 1 | eqid 83 |
. . . . . . . . 9
|
| 28 | 1, 4, 27 | cl 116 |
. . . . . . . 8
|
| 29 | 22, 28 | a1i 28 |
. . . . . . 7
|
| 30 | 17, 24, 29 | eqtri 95 |
. . . . . 6
|
| 31 | 3, 11, 17, 30 | oveq2 101 |
. . . . 5
|
| 32 | 18, 31 | leq 91 |
. . . 4
|
| 33 | 15, 19, 32 | ceq2 90 |
. . 3
|
| 34 | 20, 21, 33 | cla4ev 169 |
. 2
|
| 35 | 14, 34 | syl 16 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
| This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 df-ex 131 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |