Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > beta | GIF version |
Description: Axiom of beta-substitution. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
beta.1 | ⊢ A:β |
Ref | Expression |
---|---|
beta | ⊢ ⊤⊧[(λx:α Ax:α) = A] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weq 41 | . 2 ⊢ = :(β → (β → ∗)) | |
2 | beta.1 | . . . 4 ⊢ A:β | |
3 | 2 | wl 66 | . . 3 ⊢ λx:α A:(α → β) |
4 | wv 64 | . . 3 ⊢ x:α:α | |
5 | 3, 4 | wc 50 | . 2 ⊢ (λx:α Ax:α):β |
6 | 2 | ax-beta 67 | . 2 ⊢ ⊤⊧(( = (λx:α Ax:α))A) |
7 | 1, 5, 2, 6 | dfov2 75 | 1 ⊢ ⊤⊧[(λx:α Ax:α) = A] |
Colors of variables: type var term |
Syntax hints: tv 1 kc 5 λkl 6 = ke 7 ⊤kt 8 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-wov 71 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: clf 115 ax4 150 exlimdv 167 19.8a 170 cbvf 179 leqf 181 exlimd 183 ax11 214 axrep 220 |
Copyright terms: Public domain | W3C validator |