![]() |
Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HOLE Home > Th. List > alrimi | Unicode version |
Description: If one can prove ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
alrimi.1 |
![]() ![]() ![]() ![]() |
alrimi.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
alrimi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimi.1 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | ax-cb2 30 |
. . 3
![]() ![]() ![]() ![]() |
3 | wtru 40 |
. . . 4
![]() ![]() ![]() ![]() | |
4 | 1 | eqtru 76 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 3, 4 | eqcomi 70 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | alrimi.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 2, 5, 6 | leqf 169 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1 | ax-cb1 29 |
. . 3
![]() ![]() ![]() ![]() |
9 | 2 | wl 59 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9 | alval 132 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 8, 10 | a1i 28 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 7, 11 | mpbir 77 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: type var term |
Syntax hints: tv 1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-hbl1 93 ax-17 95 ax-inst 103 ax-eta 165 |
This theorem depends on definitions: df-ov 65 df-al 116 |
This theorem is referenced by: alimdv 172 alnex 174 isfree 176 ax5 194 ax7 196 |
Copyright terms: Public domain | W3C validator |