Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > eqtru | GIF version |
Description: If a statement is provable, then it is equivalent to truth. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
eqtru.1 | ⊢ R⊧A |
Ref | Expression |
---|---|
eqtru | ⊢ R⊧[⊤ = A] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtru.1 | . . 3 ⊢ R⊧A | |
2 | wtru 43 | . . 3 ⊢ ⊤:∗ | |
3 | 1, 2 | adantr 55 | . 2 ⊢ (R, ⊤)⊧A |
4 | 1 | ax-cb1 29 | . . . 4 ⊢ R:∗ |
5 | 1 | ax-cb2 30 | . . . 4 ⊢ A:∗ |
6 | 4, 5 | wct 48 | . . 3 ⊢ (R, A):∗ |
7 | tru 44 | . . 3 ⊢ ⊤⊧⊤ | |
8 | 6, 7 | a1i 28 | . 2 ⊢ (R, A)⊧⊤ |
9 | 3, 8 | ded 84 | 1 ⊢ R⊧[⊤ = A] |
Colors of variables: type var term |
Syntax hints: = ke 7 ⊤kt 8 [kbr 9 kct 10 ⊧wffMMJ2 11 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wov 71 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: hbth 109 alrimiv 151 dfan2 154 olc 164 orc 165 alrimi 182 exmid 199 ax9 212 |
Copyright terms: Public domain | W3C validator |