HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  ax7 Unicode version

Theorem ax7 209
Description: Axiom of Quantifier Commutation. Axiom scheme C6' in [Megill] p. 448 (p. 16 of the preprint). (Contributed by Mario Carneiro, 10-Oct-2014.)
Hypothesis
Ref Expression
ax7.1 |- R:*
Assertion
Ref Expression
ax7 |- T. |= [(A.\x:al (A.\y:al R)) ==> (A.\y:al (A.\x:al R))]
Distinct variable group:   x,y,al

Proof of Theorem ax7
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 wal 134 . . . . . . . 8 |- A.:((al -> *) -> *)
2 ax7.1 . . . . . . . . 9 |- R:*
32wl 66 . . . . . . . 8 |- \y:al R:(al -> *)
41, 3wc 50 . . . . . . 7 |- (A.\y:al R):*
54ax4 150 . . . . . 6 |- (A.\x:al (A.\y:al R)) |= (A.\y:al R)
62ax4 150 . . . . . 6 |- (A.\y:al R) |= R
75, 6syl 16 . . . . 5 |- (A.\x:al (A.\y:al R)) |= R
84wl 66 . . . . . 6 |- \x:al (A.\y:al R):(al -> *)
9 wv 64 . . . . . 6 |- z:al:al
101, 9ax-17 105 . . . . . 6 |- T. |= [(\x:al A.z:al) = A.]
114, 9ax-hbl1 103 . . . . . 6 |- T. |= [(\x:al \x:al (A.\y:al R)z:al) = \x:al (A.\y:al R)]
121, 8, 9, 10, 11hbc 110 . . . . 5 |- T. |= [(\x:al (A.\x:al (A.\y:al R))z:al) = (A.\x:al (A.\y:al R))]
137, 12alrimi 182 . . . 4 |- (A.\x:al (A.\y:al R)) |= (A.\x:al R)
141, 9ax-17 105 . . . . 5 |- T. |= [(\y:al A.z:al) = A.]
152, 9ax-hbl1 103 . . . . . . 7 |- T. |= [(\y:al \y:al Rz:al) = \y:al R]
161, 3, 9, 14, 15hbc 110 . . . . . 6 |- T. |= [(\y:al (A.\y:al R)z:al) = (A.\y:al R)]
174, 9, 16hbl 112 . . . . 5 |- T. |= [(\y:al \x:al (A.\y:al R)z:al) = \x:al (A.\y:al R)]
181, 8, 9, 14, 17hbc 110 . . . 4 |- T. |= [(\y:al (A.\x:al (A.\y:al R))z:al) = (A.\x:al (A.\y:al R))]
1913, 18alrimi 182 . . 3 |- (A.\x:al (A.\y:al R)) |= (A.\y:al (A.\x:al R))
20 wtru 43 . . 3 |- T.:*
2119, 20adantl 56 . 2 |- (T., (A.\x:al (A.\y:al R))) |= (A.\y:al (A.\x:al R))
2221ex 158 1 |- T. |= [(A.\x:al (A.\y:al R)) ==> (A.\y:al (A.\x:al R))]
Colors of variables: type var term
Syntax hints:  tv 1   -> ht 2  *hb 3  kc 5  \kl 6  T.kt 8  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12   ==> tim 121  A.tal 122
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113  ax-eta 177
This theorem depends on definitions:  df-ov 73  df-al 126  df-an 128  df-im 129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator