| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > hbct | Unicode version | ||
| Description: Hypothesis builder for context conjunction. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| hbct.1 |
|
| hbct.2 |
|
| hbct.3 |
|
| hbct.4 |
|
| hbct.5 |
|
| Ref | Expression |
|---|---|
| hbct |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbct.4 |
. . . 4
| |
| 2 | 1 | ax-cb1 29 |
. . 3
|
| 3 | 2 | trud 27 |
. 2
|
| 4 | hbct.1 |
. . . 4
| |
| 5 | hbct.3 |
. . . 4
| |
| 6 | 4, 5 | wct 48 |
. . 3
|
| 7 | hbct.2 |
. . 3
| |
| 8 | wan 136 |
. . . . 5
| |
| 9 | 8, 4, 5 | wov 72 |
. . . 4
|
| 10 | 4, 5 | dfan2 154 |
. . . 4
|
| 11 | 9, 10 | eqcomi 79 |
. . 3
|
| 12 | 8, 7, 2 | a17i 106 |
. . . . 5
|
| 13 | hbct.5 |
. . . . 5
| |
| 14 | 8, 4, 7, 5, 12, 1, 13 | hbov 111 |
. . . 4
|
| 15 | wtru 43 |
. . . 4
| |
| 16 | 14, 15 | adantr 55 |
. . 3
|
| 17 | 6, 7, 11, 16 | hbxfrf 107 |
. 2
|
| 18 | 3, 17 | mpdan 35 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
| This theorem depends on definitions: df-ov 73 df-an 128 |
| This theorem is referenced by: alimdv 184 ax5 207 |
| Copyright terms: Public domain | W3C validator |