| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2bi | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 |
|
| Ref | Expression |
|---|---|
| simp2bi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simp2d 1034 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 0ellim 4488 smodm 6435 erdm 6688 ixpfn 6849 dif1en 7037 eluzelz 9727 elfz3nn0 10307 ef01bndlem 12262 sin01bnd 12263 cos01bnd 12264 sin01gt0 12268 bitsss 12451 gznegcl 12893 gzcjcl 12894 gzaddcl 12895 gzmulcl 12896 gzabssqcl 12899 4sqlem4a 12909 xpsff1o 13377 subgss 13706 rngmgp 13894 srgmgp 13926 ringmgp 13960 lmodring 14253 lmodprop2d 14306 reeff1oleme 15440 cosq14gt0 15500 cosq23lt0 15501 coseq0q4123 15502 coseq00topi 15503 coseq0negpitopi 15504 cosq34lt1 15518 cos02pilt1 15519 ioocosf1o 15522 gausslemma2dlem1a 15731 2sqlem2 15788 2sqlem3 15790 |
| Copyright terms: Public domain | W3C validator |