| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2bi | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 |
|
| Ref | Expression |
|---|---|
| simp2bi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simp2d 1012 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 0ellim 4434 smodm 6358 erdm 6611 ixpfn 6772 dif1en 6949 eluzelz 9627 elfz3nn0 10207 ef01bndlem 11938 sin01bnd 11939 cos01bnd 11940 sin01gt0 11944 bitsss 12127 gznegcl 12569 gzcjcl 12570 gzaddcl 12571 gzmulcl 12572 gzabssqcl 12575 4sqlem4a 12585 xpsff1o 13051 subgss 13380 rngmgp 13568 srgmgp 13600 ringmgp 13634 lmodring 13927 lmodprop2d 13980 reeff1oleme 15092 cosq14gt0 15152 cosq23lt0 15153 coseq0q4123 15154 coseq00topi 15155 coseq0negpitopi 15156 cosq34lt1 15170 cos02pilt1 15171 ioocosf1o 15174 gausslemma2dlem1a 15383 2sqlem2 15440 2sqlem3 15442 |
| Copyright terms: Public domain | W3C validator |