| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2bi | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 |
|
| Ref | Expression |
|---|---|
| simp2bi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simp2d 1013 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 0ellim 4458 smodm 6395 erdm 6648 ixpfn 6809 dif1en 6997 eluzelz 9687 elfz3nn0 10267 ef01bndlem 12152 sin01bnd 12153 cos01bnd 12154 sin01gt0 12158 bitsss 12341 gznegcl 12783 gzcjcl 12784 gzaddcl 12785 gzmulcl 12786 gzabssqcl 12789 4sqlem4a 12799 xpsff1o 13266 subgss 13595 rngmgp 13783 srgmgp 13815 ringmgp 13849 lmodring 14142 lmodprop2d 14195 reeff1oleme 15329 cosq14gt0 15389 cosq23lt0 15390 coseq0q4123 15391 coseq00topi 15392 coseq0negpitopi 15393 cosq34lt1 15407 cos02pilt1 15408 ioocosf1o 15411 gausslemma2dlem1a 15620 2sqlem2 15677 2sqlem3 15679 |
| Copyright terms: Public domain | W3C validator |