ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp2bi Unicode version

Theorem simp2bi 1015
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
3simp1bi.1  |-  ( ph  <->  ( ps  /\  ch  /\  th ) )
Assertion
Ref Expression
simp2bi  |-  ( ph  ->  ch )

Proof of Theorem simp2bi
StepHypRef Expression
1 3simp1bi.1 . . 3  |-  ( ph  <->  ( ps  /\  ch  /\  th ) )
21biimpi 120 . 2  |-  ( ph  ->  ( ps  /\  ch  /\ 
th ) )
32simp2d 1012 1  |-  ( ph  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  0ellim  4444  smodm  6376  erdm  6629  ixpfn  6790  dif1en  6975  eluzelz  9656  elfz3nn0  10236  ef01bndlem  12009  sin01bnd  12010  cos01bnd  12011  sin01gt0  12015  bitsss  12198  gznegcl  12640  gzcjcl  12641  gzaddcl  12642  gzmulcl  12643  gzabssqcl  12646  4sqlem4a  12656  xpsff1o  13123  subgss  13452  rngmgp  13640  srgmgp  13672  ringmgp  13706  lmodring  13999  lmodprop2d  14052  reeff1oleme  15186  cosq14gt0  15246  cosq23lt0  15247  coseq0q4123  15248  coseq00topi  15249  coseq0negpitopi  15250  cosq34lt1  15264  cos02pilt1  15265  ioocosf1o  15268  gausslemma2dlem1a  15477  2sqlem2  15534  2sqlem3  15536
  Copyright terms: Public domain W3C validator