![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp2bi | Unicode version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
simp2bi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpi 120 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | simp2d 1012 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 0ellim 4430 smodm 6346 erdm 6599 ixpfn 6760 dif1en 6937 eluzelz 9604 elfz3nn0 10184 ef01bndlem 11902 sin01bnd 11903 cos01bnd 11904 sin01gt0 11908 gznegcl 12516 gzcjcl 12517 gzaddcl 12518 gzmulcl 12519 gzabssqcl 12522 4sqlem4a 12532 xpsff1o 12935 subgss 13247 rngmgp 13435 srgmgp 13467 ringmgp 13501 lmodring 13794 lmodprop2d 13847 reeff1oleme 14948 cosq14gt0 15008 cosq23lt0 15009 coseq0q4123 15010 coseq00topi 15011 coseq0negpitopi 15012 cosq34lt1 15026 cos02pilt1 15027 ioocosf1o 15030 gausslemma2dlem1a 15215 2sqlem2 15272 2sqlem3 15274 |
Copyright terms: Public domain | W3C validator |