| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2bi | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 |
|
| Ref | Expression |
|---|---|
| simp2bi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simp2d 1012 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 0ellim 4444 smodm 6376 erdm 6629 ixpfn 6790 dif1en 6975 eluzelz 9656 elfz3nn0 10236 ef01bndlem 12038 sin01bnd 12039 cos01bnd 12040 sin01gt0 12044 bitsss 12227 gznegcl 12669 gzcjcl 12670 gzaddcl 12671 gzmulcl 12672 gzabssqcl 12675 4sqlem4a 12685 xpsff1o 13152 subgss 13481 rngmgp 13669 srgmgp 13701 ringmgp 13735 lmodring 14028 lmodprop2d 14081 reeff1oleme 15215 cosq14gt0 15275 cosq23lt0 15276 coseq0q4123 15277 coseq00topi 15278 coseq0negpitopi 15279 cosq34lt1 15293 cos02pilt1 15294 ioocosf1o 15297 gausslemma2dlem1a 15506 2sqlem2 15563 2sqlem3 15565 |
| Copyright terms: Public domain | W3C validator |