| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2bi | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 |
|
| Ref | Expression |
|---|---|
| simp2bi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simp2d 1012 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 0ellim 4444 smodm 6376 erdm 6629 ixpfn 6790 dif1en 6975 eluzelz 9656 elfz3nn0 10236 ef01bndlem 12009 sin01bnd 12010 cos01bnd 12011 sin01gt0 12015 bitsss 12198 gznegcl 12640 gzcjcl 12641 gzaddcl 12642 gzmulcl 12643 gzabssqcl 12646 4sqlem4a 12656 xpsff1o 13123 subgss 13452 rngmgp 13640 srgmgp 13672 ringmgp 13706 lmodring 13999 lmodprop2d 14052 reeff1oleme 15186 cosq14gt0 15246 cosq23lt0 15247 coseq0q4123 15248 coseq00topi 15249 coseq0negpitopi 15250 cosq34lt1 15264 cos02pilt1 15265 ioocosf1o 15268 gausslemma2dlem1a 15477 2sqlem2 15534 2sqlem3 15536 |
| Copyright terms: Public domain | W3C validator |