ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp2bi Unicode version

Theorem simp2bi 960
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
3simp1bi.1  |-  ( ph  <->  ( ps  /\  ch  /\  th ) )
Assertion
Ref Expression
simp2bi  |-  ( ph  ->  ch )

Proof of Theorem simp2bi
StepHypRef Expression
1 3simp1bi.1 . . 3  |-  ( ph  <->  ( ps  /\  ch  /\  th ) )
21biimpi 119 . 2  |-  ( ph  ->  ( ps  /\  ch  /\ 
th ) )
32simp2d 957 1  |-  ( ph  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 925
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-3an 927
This theorem is referenced by:  0ellim  4234  smodm  6070  erdm  6316  ixpfn  6475  dif1en  6649  eluzelz  9089  elfz3nn0  9590  ef01bndlem  11108  sin01bnd  11109  cos01bnd  11110  sin01gt0  11113
  Copyright terms: Public domain W3C validator