ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limuni2 Unicode version

Theorem limuni2 4444
Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.)
Assertion
Ref Expression
limuni2  |-  ( Lim 
A  ->  Lim  U. A
)

Proof of Theorem limuni2
StepHypRef Expression
1 limuni 4443 . . 3  |-  ( Lim 
A  ->  A  =  U. A )
2 limeq 4424 . . 3  |-  ( A  =  U. A  -> 
( Lim  A  <->  Lim  U. A
) )
31, 2syl 14 . 2  |-  ( Lim 
A  ->  ( Lim  A  <->  Lim  U. A ) )
43ibi 176 1  |-  ( Lim 
A  ->  Lim  U. A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   U.cuni 3850   Lim wlim 4411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-in 3172  df-ss 3179  df-uni 3851  df-tr 4143  df-iord 4413  df-ilim 4416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator