ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limuni2 Unicode version

Theorem limuni2 4432
Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.)
Assertion
Ref Expression
limuni2  |-  ( Lim 
A  ->  Lim  U. A
)

Proof of Theorem limuni2
StepHypRef Expression
1 limuni 4431 . . 3  |-  ( Lim 
A  ->  A  =  U. A )
2 limeq 4412 . . 3  |-  ( A  =  U. A  -> 
( Lim  A  <->  Lim  U. A
) )
31, 2syl 14 . 2  |-  ( Lim 
A  ->  ( Lim  A  <->  Lim  U. A ) )
43ibi 176 1  |-  ( Lim 
A  ->  Lim  U. A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   U.cuni 3839   Lim wlim 4399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-in 3163  df-ss 3170  df-uni 3840  df-tr 4132  df-iord 4401  df-ilim 4404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator