ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limelon Unicode version

Theorem limelon 4250
Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.)
Assertion
Ref Expression
limelon  |-  ( ( A  e.  B  /\  Lim  A )  ->  A  e.  On )

Proof of Theorem limelon
StepHypRef Expression
1 limord 4246 . . 3  |-  ( Lim 
A  ->  Ord  A )
2 elong 4224 . . 3  |-  ( A  e.  B  ->  ( A  e.  On  <->  Ord  A ) )
31, 2syl5ibr 155 . 2  |-  ( A  e.  B  ->  ( Lim  A  ->  A  e.  On ) )
43imp 123 1  |-  ( ( A  e.  B  /\  Lim  A )  ->  A  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1445   Ord word 4213   Oncon0 4214   Lim wlim 4215
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-in 3019  df-ss 3026  df-uni 3676  df-tr 3959  df-iord 4217  df-on 4219  df-ilim 4220
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator