ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limelon Unicode version

Theorem limelon 4377
Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.)
Assertion
Ref Expression
limelon  |-  ( ( A  e.  B  /\  Lim  A )  ->  A  e.  On )

Proof of Theorem limelon
StepHypRef Expression
1 limord 4373 . . 3  |-  ( Lim 
A  ->  Ord  A )
2 elong 4351 . . 3  |-  ( A  e.  B  ->  ( A  e.  On  <->  Ord  A ) )
31, 2syl5ibr 155 . 2  |-  ( A  e.  B  ->  ( Lim  A  ->  A  e.  On ) )
43imp 123 1  |-  ( ( A  e.  B  /\  Lim  A )  ->  A  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   Ord word 4340   Oncon0 4341   Lim wlim 4342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346  df-ilim 4347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator