ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limelon Unicode version

Theorem limelon 4434
Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.)
Assertion
Ref Expression
limelon  |-  ( ( A  e.  B  /\  Lim  A )  ->  A  e.  On )

Proof of Theorem limelon
StepHypRef Expression
1 limord 4430 . . 3  |-  ( Lim 
A  ->  Ord  A )
2 elong 4408 . . 3  |-  ( A  e.  B  ->  ( A  e.  On  <->  Ord  A ) )
31, 2imbitrrid 156 . 2  |-  ( A  e.  B  ->  ( Lim  A  ->  A  e.  On ) )
43imp 124 1  |-  ( ( A  e.  B  /\  Lim  A )  ->  A  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   Ord word 4397   Oncon0 4398   Lim wlim 4399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-ilim 4404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator