ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexxfrd Unicode version

Theorem rexxfrd 4446
Description: Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by FL, 10-Apr-2007.) (Revised by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
ralxfrd.1  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  B )
ralxfrd.2  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  C  x  =  A )
ralxfrd.3  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
rexxfrd  |-  ( ph  ->  ( E. x  e.  B  ps  <->  E. y  e.  C  ch )
)
Distinct variable groups:    x, A    x, y, B    x, C    ch, x    ph, x, y    ps, y
Allowed substitution hints:    ps( x)    ch( y)    A( y)    C( y)

Proof of Theorem rexxfrd
StepHypRef Expression
1 nfv 1521 . . . . 5  |-  F/ y ps
2119.3 1547 . . . 4  |-  ( A. y ps  <->  ps )
3 ralxfrd.2 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  C  x  =  A )
4 df-rex 2454 . . . . . . . 8  |-  ( E. y  e.  C  x  =  A  <->  E. y
( y  e.  C  /\  x  =  A
) )
5 19.29 1613 . . . . . . . . . 10  |-  ( ( A. y ps  /\  E. y ( y  e.  C  /\  x  =  A ) )  ->  E. y ( ps  /\  ( y  e.  C  /\  x  =  A
) ) )
6 an12 556 . . . . . . . . . . 11  |-  ( ( ps  /\  ( y  e.  C  /\  x  =  A ) )  <->  ( y  e.  C  /\  ( ps  /\  x  =  A ) ) )
76exbii 1598 . . . . . . . . . 10  |-  ( E. y ( ps  /\  ( y  e.  C  /\  x  =  A
) )  <->  E. y
( y  e.  C  /\  ( ps  /\  x  =  A ) ) )
85, 7sylib 121 . . . . . . . . 9  |-  ( ( A. y ps  /\  E. y ( y  e.  C  /\  x  =  A ) )  ->  E. y ( y  e.  C  /\  ( ps 
/\  x  =  A ) ) )
9 df-rex 2454 . . . . . . . . 9  |-  ( E. y  e.  C  ( ps  /\  x  =  A )  <->  E. y
( y  e.  C  /\  ( ps  /\  x  =  A ) ) )
108, 9sylibr 133 . . . . . . . 8  |-  ( ( A. y ps  /\  E. y ( y  e.  C  /\  x  =  A ) )  ->  E. y  e.  C  ( ps  /\  x  =  A ) )
114, 10sylan2b 285 . . . . . . 7  |-  ( ( A. y ps  /\  E. y  e.  C  x  =  A )  ->  E. y  e.  C  ( ps  /\  x  =  A ) )
12 ralxfrd.3 . . . . . . . . . . 11  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
1312biimpd 143 . . . . . . . . . 10  |-  ( (
ph  /\  x  =  A )  ->  ( ps  ->  ch ) )
1413expimpd 361 . . . . . . . . 9  |-  ( ph  ->  ( ( x  =  A  /\  ps )  ->  ch ) )
1514ancomsd 267 . . . . . . . 8  |-  ( ph  ->  ( ( ps  /\  x  =  A )  ->  ch ) )
1615reximdv 2571 . . . . . . 7  |-  ( ph  ->  ( E. y  e.  C  ( ps  /\  x  =  A )  ->  E. y  e.  C  ch ) )
1711, 16syl5 32 . . . . . 6  |-  ( ph  ->  ( ( A. y ps  /\  E. y  e.  C  x  =  A )  ->  E. y  e.  C  ch )
)
1817adantr 274 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (
( A. y ps 
/\  E. y  e.  C  x  =  A )  ->  E. y  e.  C  ch ) )
193, 18mpan2d 426 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  ( A. y ps  ->  E. y  e.  C  ch )
)
202, 19syl5bir 152 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  ( ps  ->  E. y  e.  C  ch ) )
2120rexlimdva 2587 . 2  |-  ( ph  ->  ( E. x  e.  B  ps  ->  E. y  e.  C  ch )
)
22 ralxfrd.1 . . . 4  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  B )
2312adantlr 474 . . . 4  |-  ( ( ( ph  /\  y  e.  C )  /\  x  =  A )  ->  ( ps 
<->  ch ) )
2422, 23rspcedv 2838 . . 3  |-  ( (
ph  /\  y  e.  C )  ->  ( ch  ->  E. x  e.  B  ps ) )
2524rexlimdva 2587 . 2  |-  ( ph  ->  ( E. y  e.  C  ch  ->  E. x  e.  B  ps )
)
2621, 25impbid 128 1  |-  ( ph  ->  ( E. x  e.  B  ps  <->  E. y  e.  C  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141   E.wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732
This theorem is referenced by:  rexxfr2d  4448  rexxfr  4451
  Copyright terms: Public domain W3C validator