![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.3 | GIF version |
Description: A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
19.3.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
19.3 | ⊢ (∀𝑥𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1511 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | 19.3.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | nfri 1519 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
4 | 1, 3 | impbii 126 | 1 ⊢ (∀𝑥𝜑 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wal 1351 Ⅎwnf 1460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-4 1510 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: 19.16 1555 19.17 1556 19.27 1561 19.28 1563 19.37-1 1674 rexxfrd 4465 |
Copyright terms: Public domain | W3C validator |