| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.3 | GIF version | ||
| Description: A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| 19.3.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| 19.3 | ⊢ (∀𝑥𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 1525 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 2 | 19.3.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | nfri 1533 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 4 | 1, 3 | impbii 126 | 1 ⊢ (∀𝑥𝜑 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: 19.16 1569 19.17 1570 19.27 1575 19.28 1577 19.37-1 1688 rexxfrd 4498 |
| Copyright terms: Public domain | W3C validator |