ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.33bdc Unicode version

Theorem 19.33bdc 1618
Description: Converse of 19.33 1472 given  -.  ( E. x ph  /\ 
E. x ps ) and a decidability condition. Compare Theorem 19.33 of [Margaris] p. 90. For a version which does not require a decidability condition, see 19.33b2 1617 (Contributed by Jim Kingdon, 23-Apr-2018.)
Assertion
Ref Expression
19.33bdc  |-  (DECID  E. x ph  ->  ( -.  ( E. x ph  /\  E. x ps )  ->  ( A. x ( ph  \/  ps )  <->  ( A. x ph  \/  A. x ps ) ) ) )

Proof of Theorem 19.33bdc
StepHypRef Expression
1 ianordc 889 . 2  |-  (DECID  E. x ph  ->  ( -.  ( E. x ph  /\  E. x ps )  <->  ( -.  E. x ph  \/  -.  E. x ps ) ) )
2 19.33b2 1617 . 2  |-  ( ( -.  E. x ph  \/  -.  E. x ps )  ->  ( A. x ( ph  \/  ps )  <->  ( A. x ph  \/  A. x ps ) ) )
31, 2syl6bi 162 1  |-  (DECID  E. x ph  ->  ( -.  ( E. x ph  /\  E. x ps )  ->  ( A. x ( ph  \/  ps )  <->  ( A. x ph  \/  A. x ps ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824   A.wal 1341   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-gen 1437  ax-ie2 1482
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-fal 1349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator