ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.40 Unicode version

Theorem 19.40 1619
Description: Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.40  |-  ( E. x ( ph  /\  ps )  ->  ( E. x ph  /\  E. x ps ) )

Proof of Theorem 19.40
StepHypRef Expression
1 exsimpl 1605 . 2  |-  ( E. x ( ph  /\  ps )  ->  E. x ph )
2 simpr 109 . . 3  |-  ( (
ph  /\  ps )  ->  ps )
32eximi 1588 . 2  |-  ( E. x ( ph  /\  ps )  ->  E. x ps )
41, 3jca 304 1  |-  ( E. x ( ph  /\  ps )  ->  ( E. x ph  /\  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  19.40-2  1620  19.41h  1673  19.41  1674  exdistrfor  1788  uniin  3809  copsexg  4222  dmin  4812  imadif  5268  imainlem  5269
  Copyright terms: Public domain W3C validator