Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.33bdc | GIF version |
Description: Converse of 19.33 1472 given ¬ (∃𝑥𝜑 ∧ ∃𝑥𝜓) and a decidability condition. Compare Theorem 19.33 of [Margaris] p. 90. For a version which does not require a decidability condition, see 19.33b2 1617 (Contributed by Jim Kingdon, 23-Apr-2018.) |
Ref | Expression |
---|---|
19.33bdc | ⊢ (DECID ∃𝑥𝜑 → (¬ (∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∀𝑥(𝜑 ∨ 𝜓) ↔ (∀𝑥𝜑 ∨ ∀𝑥𝜓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ianordc 889 | . 2 ⊢ (DECID ∃𝑥𝜑 → (¬ (∃𝑥𝜑 ∧ ∃𝑥𝜓) ↔ (¬ ∃𝑥𝜑 ∨ ¬ ∃𝑥𝜓))) | |
2 | 19.33b2 1617 | . 2 ⊢ ((¬ ∃𝑥𝜑 ∨ ¬ ∃𝑥𝜓) → (∀𝑥(𝜑 ∨ 𝜓) ↔ (∀𝑥𝜑 ∨ ∀𝑥𝜓))) | |
3 | 1, 2 | syl6bi 162 | 1 ⊢ (DECID ∃𝑥𝜑 → (¬ (∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∀𝑥(𝜑 ∨ 𝜓) ↔ (∀𝑥𝜑 ∨ ∀𝑥𝜓)))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 DECID wdc 824 ∀wal 1341 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-gen 1437 ax-ie2 1482 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-fal 1349 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |