![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6bi | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
syl6bi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl6bi.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl6bi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpd 142 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | syl6bi.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl6 33 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: 19.33bdc 1566 ax11i 1649 equveli 1689 eupickbi 2030 rgen2a 2429 reu6 2804 sseq0 3324 disjel 3337 preq12b 3614 prel12 3615 prneimg 3618 elinti 3697 exmidundif 4035 opthreg 4372 elreldm 4661 issref 4814 relcnvtr 4950 relresfld 4960 funopg 5048 funimass2 5092 f0dom0 5204 fvimacnv 5414 elunirn 5545 oprabid 5681 op1steq 5949 f1o2ndf1 5993 reldmtpos 6018 rntpos 6022 nntri3or 6254 nnaordex 6286 nnawordex 6287 findcard2 6605 findcard2s 6606 lt2addnq 6963 lt2mulnq 6964 genpelvl 7071 genpelvu 7072 distrlem5prl 7145 distrlem5pru 7146 caucvgprlemnkj 7225 rereceu 7424 ltxrlt 7552 0mnnnnn0 8705 elnnnn0b 8717 btwnz 8865 uz11 9041 nn01to3 9102 zq 9111 xrltso 9266 xltnegi 9297 iccleub 9349 fzdcel 9454 uznfz 9517 2ffzeq 9552 elfzonlteqm1 9621 flqeqceilz 9725 modqadd1 9768 modqmul1 9784 frecuzrdgtcl 9819 frecuzrdgfunlem 9826 fzfig 9837 m1expeven 10002 caucvgrelemcau 10413 rexico 10654 fisumss 10784 fsum2dlemstep 10828 0dvds 11094 alzdvds 11133 opoe 11173 omoe 11174 opeo 11175 omeo 11176 m1exp1 11179 nn0enne 11180 nn0o1gt2 11183 gcdneg 11251 dfgcd2 11281 algcvgblem 11309 ialgcvga 11311 eucalglt 11317 coprmdvds 11352 divgcdcoprmex 11362 cncongr1 11363 prm2orodd 11386 bj-elssuniab 11691 bj-nn0sucALT 11873 |
Copyright terms: Public domain | W3C validator |