Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl6bi | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
syl6bi.1 | |
syl6bi.2 |
Ref | Expression |
---|---|
syl6bi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bi.1 | . . 3 | |
2 | 1 | biimpd 143 | . 2 |
3 | syl6bi.2 | . 2 | |
4 | 2, 3 | syl6 33 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.33bdc 1618 ax11i 1702 equveli 1747 eupickbi 2096 nfabdw 2326 rgen2a 2519 reu6 2914 sseq0 3449 disjel 3462 preq12b 3749 prel12 3750 prneimg 3753 elinti 3832 exmidundif 4184 opthreg 4532 elreldm 4829 issref 4985 relcnvtr 5122 relresfld 5132 funopg 5221 funimass2 5265 f0dom0 5380 fvimacnv 5599 elunirn 5733 oprabid 5870 op1steq 6144 f1o2ndf1 6192 reldmtpos 6217 rntpos 6221 nntri3or 6457 nnaordex 6491 nnawordex 6492 findcard2 6851 findcard2s 6852 mkvprop 7118 cc2lem 7203 lt2addnq 7341 lt2mulnq 7342 genpelvl 7449 genpelvu 7450 distrlem5prl 7523 distrlem5pru 7524 caucvgprlemnkj 7603 map2psrprg 7742 rereceu 7826 ltxrlt 7960 0mnnnnn0 9142 elnnnn0b 9154 nn0le2is012 9269 btwnz 9306 uz11 9484 nn01to3 9551 zq 9560 xrltso 9728 xltnegi 9767 xnn0lenn0nn0 9797 xnn0xadd0 9799 iccleub 9863 fzdcel 9971 uznfz 10034 2ffzeq 10072 elfzonlteqm1 10141 icogelb 10197 flqeqceilz 10249 modqadd1 10292 modqmul1 10308 frecuzrdgtcl 10343 frecuzrdgfunlem 10350 fzfig 10361 m1expeven 10498 qsqeqor 10561 caucvgrelemcau 10918 rexico 11159 fisumss 11329 fsum2dlemstep 11371 ntrivcvgap 11485 fprodssdc 11527 fprod2dlemstep 11559 0dvds 11747 alzdvds 11788 opoe 11828 omoe 11829 opeo 11830 omeo 11831 m1exp1 11834 nn0enne 11835 nn0o1gt2 11838 gcdneg 11911 dfgcd2 11943 algcvgblem 11977 algcvga 11979 eucalglt 11985 coprmdvds 12020 divgcdcoprmex 12030 cncongr1 12031 prm2orodd 12054 prm23lt5 12191 pockthi 12284 tg2 12660 tgcl 12664 neii1 12747 neii2 12749 txlm 12879 reopnap 13138 tgioo 13146 addcncntoplem 13151 bj-elssuniab 13632 bj-nn0sucALT 13820 triap 13868 |
Copyright terms: Public domain | W3C validator |