Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl6bi | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
syl6bi.1 | |
syl6bi.2 |
Ref | Expression |
---|---|
syl6bi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bi.1 | . . 3 | |
2 | 1 | biimpd 144 | . 2 |
3 | syl6bi.2 | . 2 | |
4 | 2, 3 | syl6 33 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 19.33bdc 1628 ax11i 1712 equveli 1757 eupickbi 2106 nfabdw 2336 rgen2a 2529 reu6 2924 sseq0 3462 disjel 3475 preq12b 3766 prel12 3767 prneimg 3770 elinti 3849 exmidundif 4201 opthreg 4549 elreldm 4846 issref 5003 relcnvtr 5140 relresfld 5150 funopg 5242 funimass2 5286 f0dom0 5401 fvimacnv 5623 elunirn 5757 oprabid 5897 op1steq 6170 f1o2ndf1 6219 reldmtpos 6244 rntpos 6248 nntri3or 6484 nnaordex 6519 nnawordex 6520 findcard2 6879 findcard2s 6880 mkvprop 7146 cc2lem 7240 lt2addnq 7378 lt2mulnq 7379 genpelvl 7486 genpelvu 7487 distrlem5prl 7560 distrlem5pru 7561 caucvgprlemnkj 7640 map2psrprg 7779 rereceu 7863 ltxrlt 7997 0mnnnnn0 9181 elnnnn0b 9193 nn0le2is012 9308 btwnz 9345 uz11 9523 nn01to3 9590 zq 9599 xrltso 9767 xltnegi 9806 xnn0lenn0nn0 9836 xnn0xadd0 9838 iccleub 9902 fzdcel 10010 uznfz 10073 2ffzeq 10111 elfzonlteqm1 10180 icogelb 10236 flqeqceilz 10288 modqadd1 10331 modqmul1 10347 frecuzrdgtcl 10382 frecuzrdgfunlem 10389 fzfig 10400 m1expeven 10537 qsqeqor 10600 caucvgrelemcau 10957 rexico 11198 fisumss 11368 fsum2dlemstep 11410 ntrivcvgap 11524 fprodssdc 11566 fprod2dlemstep 11598 0dvds 11786 alzdvds 11827 opoe 11867 omoe 11868 opeo 11869 omeo 11870 m1exp1 11873 nn0enne 11874 nn0o1gt2 11877 gcdneg 11950 dfgcd2 11982 algcvgblem 12016 algcvga 12018 eucalglt 12024 coprmdvds 12059 divgcdcoprmex 12069 cncongr1 12070 prm2orodd 12093 prm23lt5 12230 pockthi 12323 ismnddef 12685 tg2 13131 tgcl 13135 neii1 13218 neii2 13220 txlm 13350 reopnap 13609 tgioo 13617 addcncntoplem 13622 bj-elssuniab 14103 bj-nn0sucALT 14290 triap 14338 |
Copyright terms: Public domain | W3C validator |