![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6bi | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
syl6bi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl6bi.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl6bi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpd 144 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | syl6bi.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl6 33 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 19.33bdc 1630 ax11i 1714 equveli 1759 eupickbi 2108 nfabdw 2338 rgen2a 2531 reu6 2927 sseq0 3465 disjel 3478 preq12b 3771 prel12 3772 prneimg 3775 elinti 3854 exmidundif 4207 opthreg 4556 elreldm 4854 issref 5012 relcnvtr 5149 relresfld 5159 funopg 5251 funimass2 5295 f0dom0 5410 fvimacnv 5632 elunirn 5767 oprabid 5907 op1steq 6180 f1o2ndf1 6229 reldmtpos 6254 rntpos 6258 nntri3or 6494 nnaordex 6529 nnawordex 6530 findcard2 6889 findcard2s 6890 mkvprop 7156 cc2lem 7265 lt2addnq 7403 lt2mulnq 7404 genpelvl 7511 genpelvu 7512 distrlem5prl 7585 distrlem5pru 7586 caucvgprlemnkj 7665 map2psrprg 7804 rereceu 7888 ltxrlt 8023 0mnnnnn0 9208 elnnnn0b 9220 nn0le2is012 9335 btwnz 9372 uz11 9550 nn01to3 9617 zq 9626 xrltso 9796 xltnegi 9835 xnn0lenn0nn0 9865 xnn0xadd0 9867 iccleub 9931 fzdcel 10040 uznfz 10103 2ffzeq 10141 elfzonlteqm1 10210 icogelb 10266 flqeqceilz 10318 modqadd1 10361 modqmul1 10377 frecuzrdgtcl 10412 frecuzrdgfunlem 10419 fzfig 10430 m1expeven 10567 qsqeqor 10631 caucvgrelemcau 10989 rexico 11230 fisumss 11400 fsum2dlemstep 11442 ntrivcvgap 11556 fprodssdc 11598 fprod2dlemstep 11630 0dvds 11818 alzdvds 11860 opoe 11900 omoe 11901 opeo 11902 omeo 11903 m1exp1 11906 nn0enne 11907 nn0o1gt2 11910 gcdneg 11983 dfgcd2 12015 algcvgblem 12049 algcvga 12051 eucalglt 12057 coprmdvds 12092 divgcdcoprmex 12102 cncongr1 12103 prm2orodd 12126 prm23lt5 12263 pockthi 12356 f1ocpbl 12732 f1ovscpbl 12733 f1olecpbl 12734 ismnddef 12819 lmodfopnelem1 13414 tg2 13563 tgcl 13567 neii1 13650 neii2 13652 txlm 13782 reopnap 14041 tgioo 14049 addcncntoplem 14054 2lgsoddprmlem3 14462 bj-elssuniab 14546 bj-nn0sucALT 14733 triap 14780 |
Copyright terms: Public domain | W3C validator |