ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.33b2 Unicode version

Theorem 19.33b2 1629
Description: The antecedent provides a condition implying the converse of 19.33 1484. Compare Theorem 19.33 of [Margaris] p. 90. This variation of 19.33bdc 1630 is intuitionistically valid without a decidability condition. (Contributed by Mario Carneiro, 2-Feb-2015.)
Assertion
Ref Expression
19.33b2  |-  ( ( -.  E. x ph  \/  -.  E. x ps )  ->  ( A. x ( ph  \/  ps )  <->  ( A. x ph  \/  A. x ps ) ) )

Proof of Theorem 19.33b2
StepHypRef Expression
1 orcom 728 . . . . 5  |-  ( ( -.  E. x ph  \/  -.  E. x ps )  <->  ( -.  E. x ps  \/  -.  E. x ph ) )
2 alnex 1499 . . . . . 6  |-  ( A. x  -.  ps  <->  -.  E. x ps )
3 alnex 1499 . . . . . 6  |-  ( A. x  -.  ph  <->  -.  E. x ph )
42, 3orbi12i 764 . . . . 5  |-  ( ( A. x  -.  ps  \/  A. x  -.  ph ) 
<->  ( -.  E. x ps  \/  -.  E. x ph ) )
51, 4bitr4i 187 . . . 4  |-  ( ( -.  E. x ph  \/  -.  E. x ps )  <->  ( A. x  -.  ps  \/  A. x  -.  ph ) )
6 pm2.53 722 . . . . . . 7  |-  ( ( ps  \/  ph )  ->  ( -.  ps  ->  ph ) )
76orcoms 730 . . . . . 6  |-  ( (
ph  \/  ps )  ->  ( -.  ps  ->  ph ) )
87al2imi 1458 . . . . 5  |-  ( A. x ( ph  \/  ps )  ->  ( A. x  -.  ps  ->  A. x ph ) )
9 pm2.53 722 . . . . . 6  |-  ( (
ph  \/  ps )  ->  ( -.  ph  ->  ps ) )
109al2imi 1458 . . . . 5  |-  ( A. x ( ph  \/  ps )  ->  ( A. x  -.  ph  ->  A. x ps ) )
118, 10orim12d 786 . . . 4  |-  ( A. x ( ph  \/  ps )  ->  ( ( A. x  -.  ps  \/  A. x  -.  ph )  ->  ( A. x ph  \/  A. x ps ) ) )
125, 11biimtrid 152 . . 3  |-  ( A. x ( ph  \/  ps )  ->  ( ( -.  E. x ph  \/  -.  E. x ps )  ->  ( A. x ph  \/  A. x ps ) ) )
1312com12 30 . 2  |-  ( ( -.  E. x ph  \/  -.  E. x ps )  ->  ( A. x ( ph  \/  ps )  ->  ( A. x ph  \/  A. x ps ) ) )
14 19.33 1484 . 2  |-  ( ( A. x ph  \/  A. x ps )  ->  A. x ( ph  \/  ps ) )
1513, 14impbid1 142 1  |-  ( ( -.  E. x ph  \/  -.  E. x ps )  ->  ( A. x ( ph  \/  ps )  <->  ( A. x ph  \/  A. x ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 708   A.wal 1351   E.wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-gen 1449  ax-ie2 1494
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359
This theorem is referenced by:  19.33bdc  1630
  Copyright terms: Public domain W3C validator