ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.40-2 Unicode version

Theorem 19.40-2 1620
Description: Theorem *11.42 in [WhiteheadRussell] p. 163. Theorem 19.40 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
19.40-2  |-  ( E. x E. y (
ph  /\  ps )  ->  ( E. x E. y ph  /\  E. x E. y ps ) )

Proof of Theorem 19.40-2
StepHypRef Expression
1 19.40 1619 . . 3  |-  ( E. y ( ph  /\  ps )  ->  ( E. y ph  /\  E. y ps ) )
21eximi 1588 . 2  |-  ( E. x E. y (
ph  /\  ps )  ->  E. x ( E. y ph  /\  E. y ps ) )
3 19.40 1619 . 2  |-  ( E. x ( E. y ph  /\  E. y ps )  ->  ( E. x E. y ph  /\  E. x E. y ps ) )
42, 3syl 14 1  |-  ( E. x E. y (
ph  /\  ps )  ->  ( E. x E. y ph  /\  E. x E. y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator