ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.40-2 Unicode version

Theorem 19.40-2 1568
Description: Theorem *11.42 in [WhiteheadRussell] p. 163. Theorem 19.40 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
19.40-2  |-  ( E. x E. y (
ph  /\  ps )  ->  ( E. x E. y ph  /\  E. x E. y ps ) )

Proof of Theorem 19.40-2
StepHypRef Expression
1 19.40 1567 . . 3  |-  ( E. y ( ph  /\  ps )  ->  ( E. y ph  /\  E. y ps ) )
21eximi 1536 . 2  |-  ( E. x E. y (
ph  /\  ps )  ->  E. x ( E. y ph  /\  E. y ps ) )
3 19.40 1567 . 2  |-  ( E. x ( E. y ph  /\  E. y ps )  ->  ( E. x E. y ph  /\  E. x E. y ps ) )
42, 3syl 14 1  |-  ( E. x E. y (
ph  /\  ps )  ->  ( E. x E. y ph  /\  E. x E. y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   E.wex 1426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-4 1445  ax-ial 1472
This theorem depends on definitions:  df-bi 115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator