ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.40-2 Unicode version

Theorem 19.40-2 1655
Description: Theorem *11.42 in [WhiteheadRussell] p. 163. Theorem 19.40 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
19.40-2  |-  ( E. x E. y (
ph  /\  ps )  ->  ( E. x E. y ph  /\  E. x E. y ps ) )

Proof of Theorem 19.40-2
StepHypRef Expression
1 19.40 1654 . . 3  |-  ( E. y ( ph  /\  ps )  ->  ( E. y ph  /\  E. y ps ) )
21eximi 1623 . 2  |-  ( E. x E. y (
ph  /\  ps )  ->  E. x ( E. y ph  /\  E. y ps ) )
3 19.40 1654 . 2  |-  ( E. x ( E. y ph  /\  E. y ps )  ->  ( E. x E. y ph  /\  E. x E. y ps ) )
42, 3syl 14 1  |-  ( E. x E. y (
ph  /\  ps )  ->  ( E. x E. y ph  /\  E. x E. y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-ial 1557
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator