| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.40-2 | GIF version | ||
| Description: Theorem *11.42 in [WhiteheadRussell] p. 163. Theorem 19.40 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| 19.40-2 | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) → (∃𝑥∃𝑦𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 1645 | . . 3 ⊢ (∃𝑦(𝜑 ∧ 𝜓) → (∃𝑦𝜑 ∧ ∃𝑦𝜓)) | |
| 2 | 1 | eximi 1614 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) → ∃𝑥(∃𝑦𝜑 ∧ ∃𝑦𝜓)) |
| 3 | 19.40 1645 | . 2 ⊢ (∃𝑥(∃𝑦𝜑 ∧ ∃𝑦𝜓) → (∃𝑥∃𝑦𝜑 ∧ ∃𝑥∃𝑦𝜓)) | |
| 4 | 2, 3 | syl 14 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) → (∃𝑥∃𝑦𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |