| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eximi | Unicode version | ||
| Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eximi.1 |
|
| Ref | Expression |
|---|---|
| eximi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1613 |
. 2
| |
| 2 | eximi.1 |
. 2
| |
| 3 | 1, 2 | mpg 1465 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2eximi 1615 eximii 1616 exsimpl 1631 exsimpr 1632 19.29r2 1636 19.29x 1637 19.35-1 1638 19.43 1642 19.40 1645 19.40-2 1646 exanaliim 1661 19.12 1679 equs4 1739 cbvexh 1769 equvini 1772 sbimi 1778 equs5e 1809 exdistrfor 1814 equs45f 1816 sbcof2 1824 sbequi 1853 spsbe 1856 sbidm 1865 cbvexdh 1941 eumo0 2076 mor 2087 euan 2101 eupickb 2126 2eu2ex 2134 2exeu 2137 rexex 2543 reximi2 2593 cgsexg 2798 gencbvex 2810 gencbval 2812 vtocl3 2820 eqvinc 2887 eqvincg 2888 mosubt 2941 rexm 3550 prmg 3743 bm1.3ii 4154 a9evsep 4155 axnul 4158 elrelimasn 5035 dminss 5084 imainss 5085 euiotaex 5235 imadiflem 5337 funimaexglem 5341 brprcneu 5551 fv3 5581 relelfvdm 5590 ssimaex 5622 oprabid 5954 brabvv 5968 uchoice 6195 ecexr 6597 enssdom 6821 fidcenumlemim 7018 subhalfnqq 7481 prarloc 7570 ltexprlemopl 7668 ltexprlemlol 7669 ltexprlemopu 7670 ltexprlemupu 7671 fnpr2ob 12983 fngsum 13031 igsumvalx 13032 bdbm1.3ii 15537 bj-inex 15553 bj-2inf 15584 |
| Copyright terms: Public domain | W3C validator |