![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eximi | Unicode version |
Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eximi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eximi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1561 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eximi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpg 1410 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-4 1470 ax-ial 1497 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 2eximi 1563 eximii 1564 exsimpl 1579 exsimpr 1580 19.29r2 1584 19.29x 1585 19.35-1 1586 19.43 1590 19.40 1593 19.40-2 1594 exanaliim 1609 19.12 1626 equs4 1686 cbvexh 1711 equvini 1714 sbimi 1720 equs5e 1749 exdistrfor 1754 equs45f 1756 sbcof2 1764 sbequi 1793 spsbe 1796 sbidm 1805 cbvexdh 1876 eumo0 2006 mor 2017 euan 2031 eupickb 2056 2eu2ex 2064 2exeu 2067 rexex 2453 reximi2 2502 cgsexg 2692 gencbvex 2703 gencbval 2705 vtocl3 2713 eqvinc 2778 eqvincg 2779 mosubt 2830 rexm 3428 prmg 3610 bm1.3ii 4009 a9evsep 4010 axnul 4013 dminss 4911 imainss 4912 euiotaex 5062 imadiflem 5160 funimaexglem 5164 brprcneu 5368 fv3 5398 relelfvdm 5407 ssimaex 5436 oprabid 5757 brabvv 5771 ecexr 6388 enssdom 6610 fidcenumlemim 6792 subhalfnqq 7170 prarloc 7259 ltexprlemopl 7357 ltexprlemlol 7358 ltexprlemopu 7359 ltexprlemupu 7360 bdbm1.3ii 12779 bj-inex 12795 bj-2inf 12826 |
Copyright terms: Public domain | W3C validator |