ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.8ad Unicode version

Theorem 19.8ad 1570
Description: If a wff is true, it is true for at least one instance. Deduction form of 19.8a 1569. (Contributed by DAW, 13-Feb-2017.)
Hypothesis
Ref Expression
19.8ad.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
19.8ad  |-  ( ph  ->  E. x ps )

Proof of Theorem 19.8ad
StepHypRef Expression
1 19.8ad.1 . 2  |-  ( ph  ->  ps )
2 19.8a 1569 . 2  |-  ( ps 
->  E. x ps )
31, 2syl 14 1  |-  ( ph  ->  E. x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-4 1487
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  suplocexprlemloc  7536
  Copyright terms: Public domain W3C validator