ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgrpidmndm Unicode version

Theorem sgrpidmndm 13252
Description: A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.)
Hypotheses
Ref Expression
sgrpidmnd.b  |-  B  =  ( Base `  G
)
sgrpidmnd.0  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
sgrpidmndm  |-  ( ( G  e. Smgrp  /\  E. e  e.  B  ( E. w  w  e.  e  /\  e  =  .0.  ) )  ->  G  e.  Mnd )
Distinct variable groups:    B, e, w   
e, G, w    w,  .0.    w, e
Allowed substitution hint:    .0. ( e)

Proof of Theorem sgrpidmndm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-4r 542 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  e  e.  B )
2 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  w  e.  e )
3219.8ad 1614 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  E. w  w  e.  e )
4 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  e  =  .0.  )
5 sgrpidmnd.b . . . . . . . . . . . . . 14  |-  B  =  ( Base `  G
)
6 eqid 2205 . . . . . . . . . . . . . 14  |-  ( +g  `  G )  =  ( +g  `  G )
7 sgrpidmnd.0 . . . . . . . . . . . . . 14  |-  .0.  =  ( 0g `  G )
85, 6, 7grpidvalg 13205 . . . . . . . . . . . . 13  |-  ( G  e. Smgrp  ->  .0.  =  ( iota y ( y  e.  B  /\  A. x  e.  B  ( (
y ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) y )  =  x ) ) ) )
98eqeq2d 2217 . . . . . . . . . . . 12  |-  ( G  e. Smgrp  ->  ( e  =  .0.  <->  e  =  ( iota y ( y  e.  B  /\  A. x  e.  B  (
( y ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) y )  =  x ) ) ) ) )
109ad4antr 494 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  (
e  =  .0.  <->  e  =  ( iota y ( y  e.  B  /\  A. x  e.  B  (
( y ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) y )  =  x ) ) ) ) )
114, 10mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  e  =  ( iota y
( y  e.  B  /\  A. x  e.  B  ( ( y ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) y )  =  x ) ) ) )
121, 3, 113jca 1180 . . . . . . . . 9  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  (
e  e.  B  /\  E. w  w  e.  e  /\  e  =  ( iota y ( y  e.  B  /\  A. x  e.  B  (
( y ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) y )  =  x ) ) ) ) )
13 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  x  e.  B )
14 eleq1w 2266 . . . . . . . . . . . 12  |-  ( y  =  e  ->  (
y  e.  B  <->  e  e.  B ) )
15 oveq1 5951 . . . . . . . . . . . . . 14  |-  ( y  =  e  ->  (
y ( +g  `  G
) x )  =  ( e ( +g  `  G ) x ) )
1615eqeq1d 2214 . . . . . . . . . . . . 13  |-  ( y  =  e  ->  (
( y ( +g  `  G ) x )  =  x  <->  ( e
( +g  `  G ) x )  =  x ) )
1716ovanraleqv 5968 . . . . . . . . . . . 12  |-  ( y  =  e  ->  ( A. x  e.  B  ( ( y ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) y )  =  x )  <->  A. x  e.  B  ( ( e ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) e )  =  x ) ) )
1814, 17anbi12d 473 . . . . . . . . . . 11  |-  ( y  =  e  ->  (
( y  e.  B  /\  A. x  e.  B  ( ( y ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) y )  =  x ) )  <->  ( e  e.  B  /\  A. x  e.  B  ( (
e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) ) )
1918iotam 5263 . . . . . . . . . 10  |-  ( ( e  e.  B  /\  E. w  w  e.  e  /\  e  =  ( iota y ( y  e.  B  /\  A. x  e.  B  (
( y ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) y )  =  x ) ) ) )  ->  ( e  e.  B  /\  A. x  e.  B  ( (
e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) )
20 rsp 2553 . . . . . . . . . 10  |-  ( A. x  e.  B  (
( e ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) e )  =  x )  ->  (
x  e.  B  -> 
( ( e ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) e )  =  x ) ) )
2119, 20simpl2im 386 . . . . . . . . 9  |-  ( ( e  e.  B  /\  E. w  w  e.  e  /\  e  =  ( iota y ( y  e.  B  /\  A. x  e.  B  (
( y ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) y )  =  x ) ) ) )  ->  ( x  e.  B  ->  ( ( e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) )
2212, 13, 21sylc 62 . . . . . . . 8  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  (
( e ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) e )  =  x ) )
2322ralrimiva 2579 . . . . . . 7  |-  ( ( ( ( G  e. Smgrp  /\  e  e.  B
)  /\  w  e.  e )  /\  e  =  .0.  )  ->  A. x  e.  B  ( (
e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) )
2423exp31 364 . . . . . 6  |-  ( ( G  e. Smgrp  /\  e  e.  B )  ->  (
w  e.  e  -> 
( e  =  .0. 
->  A. x  e.  B  ( ( e ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) e )  =  x ) ) ) )
2524exlimdv 1842 . . . . 5  |-  ( ( G  e. Smgrp  /\  e  e.  B )  ->  ( E. w  w  e.  e  ->  ( e  =  .0.  ->  A. x  e.  B  ( (
e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) ) )
2625impd 254 . . . 4  |-  ( ( G  e. Smgrp  /\  e  e.  B )  ->  (
( E. w  w  e.  e  /\  e  =  .0.  )  ->  A. x  e.  B  ( (
e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) )
2726reximdva 2608 . . 3  |-  ( G  e. Smgrp  ->  ( E. e  e.  B  ( E. w  w  e.  e  /\  e  =  .0.  )  ->  E. e  e.  B  A. x  e.  B  ( ( e ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) e )  =  x ) ) )
2827imdistani 445 . 2  |-  ( ( G  e. Smgrp  /\  E. e  e.  B  ( E. w  w  e.  e  /\  e  =  .0.  ) )  ->  ( G  e. Smgrp  /\  E. e  e.  B  A. x  e.  B  ( (
e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) )
295, 6ismnddef 13250 . 2  |-  ( G  e.  Mnd  <->  ( G  e. Smgrp  /\  E. e  e.  B  A. x  e.  B  ( ( e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) )
3028, 29sylibr 134 1  |-  ( ( G  e. Smgrp  /\  E. e  e.  B  ( E. w  w  e.  e  /\  e  =  .0.  ) )  ->  G  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   E.wrex 2485   iotacio 5230   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   0gc0g 13088  Smgrpcsgrp 13233   Mndcmnd 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-mnd 13249
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator