Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sgrpidmndm | Unicode version |
Description: A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.) |
Ref | Expression |
---|---|
sgrpidmnd.b | |
sgrpidmnd.0 |
Ref | Expression |
---|---|
sgrpidmndm | Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp-4r 537 | . . . . . . . . . 10 Smgrp | |
2 | simpllr 529 | . . . . . . . . . . 11 Smgrp | |
3 | 2 | 19.8ad 1584 | . . . . . . . . . 10 Smgrp |
4 | simplr 525 | . . . . . . . . . . 11 Smgrp | |
5 | sgrpidmnd.b | . . . . . . . . . . . . . 14 | |
6 | eqid 2170 | . . . . . . . . . . . . . 14 | |
7 | sgrpidmnd.0 | . . . . . . . . . . . . . 14 | |
8 | 5, 6, 7 | grpidvalg 12627 | . . . . . . . . . . . . 13 Smgrp |
9 | 8 | eqeq2d 2182 | . . . . . . . . . . . 12 Smgrp |
10 | 9 | ad4antr 491 | . . . . . . . . . . 11 Smgrp |
11 | 4, 10 | mpbid 146 | . . . . . . . . . 10 Smgrp |
12 | 1, 3, 11 | 3jca 1172 | . . . . . . . . 9 Smgrp |
13 | simpr 109 | . . . . . . . . 9 Smgrp | |
14 | eleq1w 2231 | . . . . . . . . . . . 12 | |
15 | oveq1 5860 | . . . . . . . . . . . . . 14 | |
16 | 15 | eqeq1d 2179 | . . . . . . . . . . . . 13 |
17 | 16 | ovanraleqv 5877 | . . . . . . . . . . . 12 |
18 | 14, 17 | anbi12d 470 | . . . . . . . . . . 11 |
19 | 18 | iotam 5190 | . . . . . . . . . 10 |
20 | rsp 2517 | . . . . . . . . . 10 | |
21 | 19, 20 | simpl2im 384 | . . . . . . . . 9 |
22 | 12, 13, 21 | sylc 62 | . . . . . . . 8 Smgrp |
23 | 22 | ralrimiva 2543 | . . . . . . 7 Smgrp |
24 | 23 | exp31 362 | . . . . . 6 Smgrp |
25 | 24 | exlimdv 1812 | . . . . 5 Smgrp |
26 | 25 | impd 252 | . . . 4 Smgrp |
27 | 26 | reximdva 2572 | . . 3 Smgrp |
28 | 27 | imdistani 443 | . 2 Smgrp Smgrp |
29 | 5, 6 | ismnddef 12654 | . 2 Smgrp |
30 | 28, 29 | sylibr 133 | 1 Smgrp |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wex 1485 wcel 2141 wral 2448 wrex 2449 cio 5158 cfv 5198 (class class class)co 5853 cbs 12416 cplusg 12480 c0g 12596 Smgrpcsgrp 12642 cmnd 12652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-riota 5809 df-ov 5856 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-0g 12598 df-mnd 12653 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |