ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgrpidmndm Unicode version

Theorem sgrpidmndm 12904
Description: A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.)
Hypotheses
Ref Expression
sgrpidmnd.b  |-  B  =  ( Base `  G
)
sgrpidmnd.0  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
sgrpidmndm  |-  ( ( G  e. Smgrp  /\  E. e  e.  B  ( E. w  w  e.  e  /\  e  =  .0.  ) )  ->  G  e.  Mnd )
Distinct variable groups:    B, e, w   
e, G, w    w,  .0.    w, e
Allowed substitution hint:    .0. ( e)

Proof of Theorem sgrpidmndm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-4r 542 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  e  e.  B )
2 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  w  e.  e )
3219.8ad 1602 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  E. w  w  e.  e )
4 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  e  =  .0.  )
5 sgrpidmnd.b . . . . . . . . . . . . . 14  |-  B  =  ( Base `  G
)
6 eqid 2189 . . . . . . . . . . . . . 14  |-  ( +g  `  G )  =  ( +g  `  G )
7 sgrpidmnd.0 . . . . . . . . . . . . . 14  |-  .0.  =  ( 0g `  G )
85, 6, 7grpidvalg 12860 . . . . . . . . . . . . 13  |-  ( G  e. Smgrp  ->  .0.  =  ( iota y ( y  e.  B  /\  A. x  e.  B  ( (
y ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) y )  =  x ) ) ) )
98eqeq2d 2201 . . . . . . . . . . . 12  |-  ( G  e. Smgrp  ->  ( e  =  .0.  <->  e  =  ( iota y ( y  e.  B  /\  A. x  e.  B  (
( y ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) y )  =  x ) ) ) ) )
109ad4antr 494 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  (
e  =  .0.  <->  e  =  ( iota y ( y  e.  B  /\  A. x  e.  B  (
( y ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) y )  =  x ) ) ) ) )
114, 10mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  e  =  ( iota y
( y  e.  B  /\  A. x  e.  B  ( ( y ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) y )  =  x ) ) ) )
121, 3, 113jca 1179 . . . . . . . . 9  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  (
e  e.  B  /\  E. w  w  e.  e  /\  e  =  ( iota y ( y  e.  B  /\  A. x  e.  B  (
( y ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) y )  =  x ) ) ) ) )
13 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  x  e.  B )
14 eleq1w 2250 . . . . . . . . . . . 12  |-  ( y  =  e  ->  (
y  e.  B  <->  e  e.  B ) )
15 oveq1 5907 . . . . . . . . . . . . . 14  |-  ( y  =  e  ->  (
y ( +g  `  G
) x )  =  ( e ( +g  `  G ) x ) )
1615eqeq1d 2198 . . . . . . . . . . . . 13  |-  ( y  =  e  ->  (
( y ( +g  `  G ) x )  =  x  <->  ( e
( +g  `  G ) x )  =  x ) )
1716ovanraleqv 5924 . . . . . . . . . . . 12  |-  ( y  =  e  ->  ( A. x  e.  B  ( ( y ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) y )  =  x )  <->  A. x  e.  B  ( ( e ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) e )  =  x ) ) )
1814, 17anbi12d 473 . . . . . . . . . . 11  |-  ( y  =  e  ->  (
( y  e.  B  /\  A. x  e.  B  ( ( y ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) y )  =  x ) )  <->  ( e  e.  B  /\  A. x  e.  B  ( (
e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) ) )
1918iotam 5230 . . . . . . . . . 10  |-  ( ( e  e.  B  /\  E. w  w  e.  e  /\  e  =  ( iota y ( y  e.  B  /\  A. x  e.  B  (
( y ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) y )  =  x ) ) ) )  ->  ( e  e.  B  /\  A. x  e.  B  ( (
e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) )
20 rsp 2537 . . . . . . . . . 10  |-  ( A. x  e.  B  (
( e ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) e )  =  x )  ->  (
x  e.  B  -> 
( ( e ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) e )  =  x ) ) )
2119, 20simpl2im 386 . . . . . . . . 9  |-  ( ( e  e.  B  /\  E. w  w  e.  e  /\  e  =  ( iota y ( y  e.  B  /\  A. x  e.  B  (
( y ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) y )  =  x ) ) ) )  ->  ( x  e.  B  ->  ( ( e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) )
2212, 13, 21sylc 62 . . . . . . . 8  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  (
( e ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) e )  =  x ) )
2322ralrimiva 2563 . . . . . . 7  |-  ( ( ( ( G  e. Smgrp  /\  e  e.  B
)  /\  w  e.  e )  /\  e  =  .0.  )  ->  A. x  e.  B  ( (
e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) )
2423exp31 364 . . . . . 6  |-  ( ( G  e. Smgrp  /\  e  e.  B )  ->  (
w  e.  e  -> 
( e  =  .0. 
->  A. x  e.  B  ( ( e ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) e )  =  x ) ) ) )
2524exlimdv 1830 . . . . 5  |-  ( ( G  e. Smgrp  /\  e  e.  B )  ->  ( E. w  w  e.  e  ->  ( e  =  .0.  ->  A. x  e.  B  ( (
e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) ) )
2625impd 254 . . . 4  |-  ( ( G  e. Smgrp  /\  e  e.  B )  ->  (
( E. w  w  e.  e  /\  e  =  .0.  )  ->  A. x  e.  B  ( (
e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) )
2726reximdva 2592 . . 3  |-  ( G  e. Smgrp  ->  ( E. e  e.  B  ( E. w  w  e.  e  /\  e  =  .0.  )  ->  E. e  e.  B  A. x  e.  B  ( ( e ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) e )  =  x ) ) )
2827imdistani 445 . 2  |-  ( ( G  e. Smgrp  /\  E. e  e.  B  ( E. w  w  e.  e  /\  e  =  .0.  ) )  ->  ( G  e. Smgrp  /\  E. e  e.  B  A. x  e.  B  ( (
e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) )
295, 6ismnddef 12902 . 2  |-  ( G  e.  Mnd  <->  ( G  e. Smgrp  /\  E. e  e.  B  A. x  e.  B  ( ( e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) )
3028, 29sylibr 134 1  |-  ( ( G  e. Smgrp  /\  E. e  e.  B  ( E. w  w  e.  e  /\  e  =  .0.  ) )  ->  G  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2160   A.wral 2468   E.wrex 2469   iotacio 5197   ` cfv 5238  (class class class)co 5900   Basecbs 12523   +g cplusg 12600   0gc0g 12772  Smgrpcsgrp 12887   Mndcmnd 12900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-cnex 7937  ax-resscn 7938  ax-1re 7940  ax-addrcl 7943
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-iota 5199  df-fun 5240  df-fn 5241  df-fv 5246  df-riota 5855  df-ov 5903  df-inn 8955  df-2 9013  df-ndx 12526  df-slot 12527  df-base 12529  df-plusg 12613  df-0g 12774  df-mnd 12901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator