| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sgrpidmndm | Unicode version | ||
| Description: A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.) |
| Ref | Expression |
|---|---|
| sgrpidmnd.b |
|
| sgrpidmnd.0 |
|
| Ref | Expression |
|---|---|
| sgrpidmndm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp-4r 542 |
. . . . . . . . . 10
| |
| 2 | simpllr 534 |
. . . . . . . . . . 11
| |
| 3 | 2 | 19.8ad 1615 |
. . . . . . . . . 10
|
| 4 | simplr 528 |
. . . . . . . . . . 11
| |
| 5 | sgrpidmnd.b |
. . . . . . . . . . . . . 14
| |
| 6 | eqid 2207 |
. . . . . . . . . . . . . 14
| |
| 7 | sgrpidmnd.0 |
. . . . . . . . . . . . . 14
| |
| 8 | 5, 6, 7 | grpidvalg 13320 |
. . . . . . . . . . . . 13
|
| 9 | 8 | eqeq2d 2219 |
. . . . . . . . . . . 12
|
| 10 | 9 | ad4antr 494 |
. . . . . . . . . . 11
|
| 11 | 4, 10 | mpbid 147 |
. . . . . . . . . 10
|
| 12 | 1, 3, 11 | 3jca 1180 |
. . . . . . . . 9
|
| 13 | simpr 110 |
. . . . . . . . 9
| |
| 14 | eleq1w 2268 |
. . . . . . . . . . . 12
| |
| 15 | oveq1 5974 |
. . . . . . . . . . . . . 14
| |
| 16 | 15 | eqeq1d 2216 |
. . . . . . . . . . . . 13
|
| 17 | 16 | ovanraleqv 5991 |
. . . . . . . . . . . 12
|
| 18 | 14, 17 | anbi12d 473 |
. . . . . . . . . . 11
|
| 19 | 18 | iotam 5282 |
. . . . . . . . . 10
|
| 20 | rsp 2555 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | simpl2im 386 |
. . . . . . . . 9
|
| 22 | 12, 13, 21 | sylc 62 |
. . . . . . . 8
|
| 23 | 22 | ralrimiva 2581 |
. . . . . . 7
|
| 24 | 23 | exp31 364 |
. . . . . 6
|
| 25 | 24 | exlimdv 1843 |
. . . . 5
|
| 26 | 25 | impd 254 |
. . . 4
|
| 27 | 26 | reximdva 2610 |
. . 3
|
| 28 | 27 | imdistani 445 |
. 2
|
| 29 | 5, 6 | ismnddef 13365 |
. 2
|
| 30 | 28, 29 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-riota 5922 df-ov 5970 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-mnd 13364 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |