| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sgrpidmndm | Unicode version | ||
| Description: A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.) |
| Ref | Expression |
|---|---|
| sgrpidmnd.b |
|
| sgrpidmnd.0 |
|
| Ref | Expression |
|---|---|
| sgrpidmndm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp-4r 542 |
. . . . . . . . . 10
| |
| 2 | simpllr 534 |
. . . . . . . . . . 11
| |
| 3 | 2 | 19.8ad 1613 |
. . . . . . . . . 10
|
| 4 | simplr 528 |
. . . . . . . . . . 11
| |
| 5 | sgrpidmnd.b |
. . . . . . . . . . . . . 14
| |
| 6 | eqid 2204 |
. . . . . . . . . . . . . 14
| |
| 7 | sgrpidmnd.0 |
. . . . . . . . . . . . . 14
| |
| 8 | 5, 6, 7 | grpidvalg 13176 |
. . . . . . . . . . . . 13
|
| 9 | 8 | eqeq2d 2216 |
. . . . . . . . . . . 12
|
| 10 | 9 | ad4antr 494 |
. . . . . . . . . . 11
|
| 11 | 4, 10 | mpbid 147 |
. . . . . . . . . 10
|
| 12 | 1, 3, 11 | 3jca 1179 |
. . . . . . . . 9
|
| 13 | simpr 110 |
. . . . . . . . 9
| |
| 14 | eleq1w 2265 |
. . . . . . . . . . . 12
| |
| 15 | oveq1 5950 |
. . . . . . . . . . . . . 14
| |
| 16 | 15 | eqeq1d 2213 |
. . . . . . . . . . . . 13
|
| 17 | 16 | ovanraleqv 5967 |
. . . . . . . . . . . 12
|
| 18 | 14, 17 | anbi12d 473 |
. . . . . . . . . . 11
|
| 19 | 18 | iotam 5262 |
. . . . . . . . . 10
|
| 20 | rsp 2552 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | simpl2im 386 |
. . . . . . . . 9
|
| 22 | 12, 13, 21 | sylc 62 |
. . . . . . . 8
|
| 23 | 22 | ralrimiva 2578 |
. . . . . . 7
|
| 24 | 23 | exp31 364 |
. . . . . 6
|
| 25 | 24 | exlimdv 1841 |
. . . . 5
|
| 26 | 25 | impd 254 |
. . . 4
|
| 27 | 26 | reximdva 2607 |
. . 3
|
| 28 | 27 | imdistani 445 |
. 2
|
| 29 | 5, 6 | ismnddef 13221 |
. 2
|
| 30 | 28, 29 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-riota 5898 df-ov 5946 df-inn 9036 df-2 9094 df-ndx 12806 df-slot 12807 df-base 12809 df-plusg 12893 df-0g 13061 df-mnd 13220 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |