ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgrpidmndm Unicode version

Theorem sgrpidmndm 12656
Description: A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.)
Hypotheses
Ref Expression
sgrpidmnd.b  |-  B  =  ( Base `  G
)
sgrpidmnd.0  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
sgrpidmndm  |-  ( ( G  e. Smgrp  /\  E. e  e.  B  ( E. w  w  e.  e  /\  e  =  .0.  ) )  ->  G  e.  Mnd )
Distinct variable groups:    B, e, w   
e, G, w    w,  .0.    w, e
Allowed substitution hint:    .0. ( e)

Proof of Theorem sgrpidmndm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-4r 537 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  e  e.  B )
2 simpllr 529 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  w  e.  e )
3219.8ad 1584 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  E. w  w  e.  e )
4 simplr 525 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  e  =  .0.  )
5 sgrpidmnd.b . . . . . . . . . . . . . 14  |-  B  =  ( Base `  G
)
6 eqid 2170 . . . . . . . . . . . . . 14  |-  ( +g  `  G )  =  ( +g  `  G )
7 sgrpidmnd.0 . . . . . . . . . . . . . 14  |-  .0.  =  ( 0g `  G )
85, 6, 7grpidvalg 12627 . . . . . . . . . . . . 13  |-  ( G  e. Smgrp  ->  .0.  =  ( iota y ( y  e.  B  /\  A. x  e.  B  ( (
y ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) y )  =  x ) ) ) )
98eqeq2d 2182 . . . . . . . . . . . 12  |-  ( G  e. Smgrp  ->  ( e  =  .0.  <->  e  =  ( iota y ( y  e.  B  /\  A. x  e.  B  (
( y ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) y )  =  x ) ) ) ) )
109ad4antr 491 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  (
e  =  .0.  <->  e  =  ( iota y ( y  e.  B  /\  A. x  e.  B  (
( y ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) y )  =  x ) ) ) ) )
114, 10mpbid 146 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  e  =  ( iota y
( y  e.  B  /\  A. x  e.  B  ( ( y ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) y )  =  x ) ) ) )
121, 3, 113jca 1172 . . . . . . . . 9  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  (
e  e.  B  /\  E. w  w  e.  e  /\  e  =  ( iota y ( y  e.  B  /\  A. x  e.  B  (
( y ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) y )  =  x ) ) ) ) )
13 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  x  e.  B )
14 eleq1w 2231 . . . . . . . . . . . 12  |-  ( y  =  e  ->  (
y  e.  B  <->  e  e.  B ) )
15 oveq1 5860 . . . . . . . . . . . . . 14  |-  ( y  =  e  ->  (
y ( +g  `  G
) x )  =  ( e ( +g  `  G ) x ) )
1615eqeq1d 2179 . . . . . . . . . . . . 13  |-  ( y  =  e  ->  (
( y ( +g  `  G ) x )  =  x  <->  ( e
( +g  `  G ) x )  =  x ) )
1716ovanraleqv 5877 . . . . . . . . . . . 12  |-  ( y  =  e  ->  ( A. x  e.  B  ( ( y ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) y )  =  x )  <->  A. x  e.  B  ( ( e ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) e )  =  x ) ) )
1814, 17anbi12d 470 . . . . . . . . . . 11  |-  ( y  =  e  ->  (
( y  e.  B  /\  A. x  e.  B  ( ( y ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) y )  =  x ) )  <->  ( e  e.  B  /\  A. x  e.  B  ( (
e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) ) )
1918iotam 5190 . . . . . . . . . 10  |-  ( ( e  e.  B  /\  E. w  w  e.  e  /\  e  =  ( iota y ( y  e.  B  /\  A. x  e.  B  (
( y ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) y )  =  x ) ) ) )  ->  ( e  e.  B  /\  A. x  e.  B  ( (
e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) )
20 rsp 2517 . . . . . . . . . 10  |-  ( A. x  e.  B  (
( e ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) e )  =  x )  ->  (
x  e.  B  -> 
( ( e ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) e )  =  x ) ) )
2119, 20simpl2im 384 . . . . . . . . 9  |-  ( ( e  e.  B  /\  E. w  w  e.  e  /\  e  =  ( iota y ( y  e.  B  /\  A. x  e.  B  (
( y ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) y )  =  x ) ) ) )  ->  ( x  e.  B  ->  ( ( e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) )
2212, 13, 21sylc 62 . . . . . . . 8  |-  ( ( ( ( ( G  e. Smgrp  /\  e  e.  B )  /\  w  e.  e )  /\  e  =  .0.  )  /\  x  e.  B )  ->  (
( e ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) e )  =  x ) )
2322ralrimiva 2543 . . . . . . 7  |-  ( ( ( ( G  e. Smgrp  /\  e  e.  B
)  /\  w  e.  e )  /\  e  =  .0.  )  ->  A. x  e.  B  ( (
e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) )
2423exp31 362 . . . . . 6  |-  ( ( G  e. Smgrp  /\  e  e.  B )  ->  (
w  e.  e  -> 
( e  =  .0. 
->  A. x  e.  B  ( ( e ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) e )  =  x ) ) ) )
2524exlimdv 1812 . . . . 5  |-  ( ( G  e. Smgrp  /\  e  e.  B )  ->  ( E. w  w  e.  e  ->  ( e  =  .0.  ->  A. x  e.  B  ( (
e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) ) )
2625impd 252 . . . 4  |-  ( ( G  e. Smgrp  /\  e  e.  B )  ->  (
( E. w  w  e.  e  /\  e  =  .0.  )  ->  A. x  e.  B  ( (
e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) )
2726reximdva 2572 . . 3  |-  ( G  e. Smgrp  ->  ( E. e  e.  B  ( E. w  w  e.  e  /\  e  =  .0.  )  ->  E. e  e.  B  A. x  e.  B  ( ( e ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G ) e )  =  x ) ) )
2827imdistani 443 . 2  |-  ( ( G  e. Smgrp  /\  E. e  e.  B  ( E. w  w  e.  e  /\  e  =  .0.  ) )  ->  ( G  e. Smgrp  /\  E. e  e.  B  A. x  e.  B  ( (
e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) )
295, 6ismnddef 12654 . 2  |-  ( G  e.  Mnd  <->  ( G  e. Smgrp  /\  E. e  e.  B  A. x  e.  B  ( ( e ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) e )  =  x ) ) )
3028, 29sylibr 133 1  |-  ( ( G  e. Smgrp  /\  E. e  e.  B  ( E. w  w  e.  e  /\  e  =  .0.  ) )  ->  G  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   E.wrex 2449   iotacio 5158   ` cfv 5198  (class class class)co 5853   Basecbs 12416   +g cplusg 12480   0gc0g 12596  Smgrpcsgrp 12642   Mndcmnd 12652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-riota 5809  df-ov 5856  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-0g 12598  df-mnd 12653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator