ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23bi Unicode version

Theorem 19.23bi 1528
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.23bi.1  |-  ( E. x ph  ->  ps )
Assertion
Ref Expression
19.23bi  |-  ( ph  ->  ps )

Proof of Theorem 19.23bi
StepHypRef Expression
1 19.8a 1527 . 2  |-  ( ph  ->  E. x ph )
2 19.23bi.1 . 2  |-  ( E. x ph  ->  ps )
31, 2syl 14 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-4 1445
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  mo2icl  2792  copsexg  4062
  Copyright terms: Public domain W3C validator