Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.8a | Unicode version |
Description: If a wff is true, then it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.8a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 | |
2 | hbe1 1475 | . . . 4 | |
3 | 2 | 19.23h 1478 | . . 3 |
4 | 1, 3 | mpbir 145 | . 2 |
5 | 4 | spi 1516 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1333 wex 1472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.8ad 1571 19.23bi 1572 exim 1579 19.43 1608 hbex 1616 19.2 1618 19.9t 1622 19.9h 1623 excomim 1643 19.38 1656 nexr 1672 sbequ1 1748 equs5e 1775 exdistrfor 1780 sbcof2 1790 mo2n 2034 euor2 2064 2moex 2092 2euex 2093 2moswapdc 2096 2exeu 2098 rspe 2506 rsp2e 2508 ceqex 2839 vn0m 3405 intab 3836 copsexg 4204 eusv2nf 4415 dmcosseq 4856 dminss 4999 imainss 5000 relssdmrn 5105 oprabid 5850 tfrlemibxssdm 6271 tfr1onlembxssdm 6287 tfrcllembxssdm 6300 snexxph 6891 nqprl 7465 nqpru 7466 ltsopr 7510 ltexprlemm 7514 recexprlemopl 7539 recexprlemopu 7541 suplocexprlemrl 7631 |
Copyright terms: Public domain | W3C validator |