| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbii | Unicode version | ||
| Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
| Ref | Expression |
|---|---|
| mpbii.min |
|
| mpbii.maj |
|
| Ref | Expression |
|---|---|
| mpbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbii.min |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mpbii.maj |
. 2
| |
| 4 | 2, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.26dc 909 orandc 942 19.9ht 1664 ax11v2 1843 ax11v 1850 ax11ev 1851 equs5or 1853 nfsbxy 1970 nfsbxyt 1971 nfabdw 2367 eqvisset 2782 vtoclgf 2831 vtoclg1f 2832 eueq3dc 2947 mo2icl 2952 csbiegf 3137 un00 3507 sneqr 3801 preqr1 3809 preq12b 3811 prel12 3812 nfopd 3836 ssex 4181 exmidundif 4250 iunpw 4527 nfimad 5031 dfrel2 5133 funsng 5320 cnvresid 5348 nffvd 5588 fnbrfvb 5619 funfvop 5692 acexmidlema 5935 tposf12 6355 supsnti 7107 exmidonfinlem 7301 sucpw1ne3 7344 sucpw1nel3 7345 recidnq 7506 ltaddnq 7520 ltadd1sr 7889 suplocsrlempr 7920 pncan3 8280 divcanap2 8753 ltp1 8917 ltm1 8919 recreclt 8973 nn0ind-raph 9490 2tnp1ge0ge0 10444 iswrdiz 11001 fsumcnv 11748 fprodcnv 11936 ef01bndlem 12067 sin01gt0 12073 cos01gt0 12074 ltoddhalfle 12204 bezoutlemnewy 12317 isprm5 12464 4sqlem12 12725 gsumval2 13229 nmznsg 13549 tangtx 15310 gausslemma2dlem1a 15535 lgseisenlem4 15550 2lgslem3a 15570 2lgslem3b 15571 2lgslem3c 15572 2lgslem3d 15573 bdsepnft 15823 bdssex 15838 bj-inex 15843 bj-d0clsepcl 15861 bj-2inf 15874 bj-inf2vnlem2 15907 |
| Copyright terms: Public domain | W3C validator |