| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbii | Unicode version | ||
| Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
| Ref | Expression |
|---|---|
| mpbii.min |
|
| mpbii.maj |
|
| Ref | Expression |
|---|---|
| mpbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbii.min |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mpbii.maj |
. 2
| |
| 4 | 2, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.26dc 908 orandc 941 19.9ht 1655 ax11v2 1834 ax11v 1841 ax11ev 1842 equs5or 1844 nfsbxy 1961 nfsbxyt 1962 nfabdw 2358 eqvisset 2773 vtoclgf 2822 vtoclg1f 2823 eueq3dc 2938 mo2icl 2943 csbiegf 3128 un00 3498 sneqr 3791 preqr1 3799 preq12b 3801 prel12 3802 nfopd 3826 ssex 4171 exmidundif 4240 iunpw 4516 nfimad 5019 dfrel2 5121 funsng 5305 cnvresid 5333 nffvd 5573 fnbrfvb 5604 funfvop 5677 acexmidlema 5916 tposf12 6336 supsnti 7080 exmidonfinlem 7272 sucpw1ne3 7315 sucpw1nel3 7316 recidnq 7477 ltaddnq 7491 ltadd1sr 7860 suplocsrlempr 7891 pncan3 8251 divcanap2 8724 ltp1 8888 ltm1 8890 recreclt 8944 nn0ind-raph 9460 2tnp1ge0ge0 10408 iswrdiz 10959 fsumcnv 11619 fprodcnv 11807 ef01bndlem 11938 sin01gt0 11944 cos01gt0 11945 ltoddhalfle 12075 bezoutlemnewy 12188 isprm5 12335 4sqlem12 12596 gsumval2 13099 nmznsg 13419 tangtx 15158 gausslemma2dlem1a 15383 lgseisenlem4 15398 2lgslem3a 15418 2lgslem3b 15419 2lgslem3c 15420 2lgslem3d 15421 bdsepnft 15617 bdssex 15632 bj-inex 15637 bj-d0clsepcl 15655 bj-2inf 15668 bj-inf2vnlem2 15701 |
| Copyright terms: Public domain | W3C validator |