| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbii | Unicode version | ||
| Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
| Ref | Expression |
|---|---|
| mpbii.min |
|
| mpbii.maj |
|
| Ref | Expression |
|---|---|
| mpbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbii.min |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mpbii.maj |
. 2
| |
| 4 | 2, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.26dc 909 orandc 942 19.9ht 1665 ax11v2 1844 ax11v 1851 ax11ev 1852 equs5or 1854 nfsbxy 1971 nfsbxyt 1972 nfabdw 2369 eqvisset 2787 vtoclgf 2836 vtoclg1f 2837 eueq3dc 2954 mo2icl 2959 csbiegf 3145 un00 3515 sneqr 3814 preqr1 3822 preq12b 3824 prel12 3825 nfopd 3850 ssex 4197 exmidundif 4266 iunpw 4545 nfimad 5050 dfrel2 5152 funsng 5339 cnvresid 5367 nffvd 5611 fnbrfvb 5642 funfvop 5715 acexmidlema 5958 tposf12 6378 supsnti 7133 pr2cv1 7329 exmidonfinlem 7332 sucpw1ne3 7378 sucpw1nel3 7379 recidnq 7541 ltaddnq 7555 ltadd1sr 7924 suplocsrlempr 7955 pncan3 8315 divcanap2 8788 ltp1 8952 ltm1 8954 recreclt 9008 nn0ind-raph 9525 2tnp1ge0ge0 10481 iswrdiz 11038 fsumcnv 11863 fprodcnv 12051 ef01bndlem 12182 sin01gt0 12188 cos01gt0 12189 ltoddhalfle 12319 bezoutlemnewy 12432 isprm5 12579 4sqlem12 12840 gsumval2 13344 nmznsg 13664 tangtx 15425 gausslemma2dlem1a 15650 lgseisenlem4 15665 2lgslem3a 15685 2lgslem3b 15686 2lgslem3c 15687 2lgslem3d 15688 bdsepnft 16022 bdssex 16037 bj-inex 16042 bj-d0clsepcl 16060 bj-2inf 16073 bj-inf2vnlem2 16106 |
| Copyright terms: Public domain | W3C validator |