Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpbii | Unicode version |
Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mpbii.min | |
mpbii.maj |
Ref | Expression |
---|---|
mpbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbii.min | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | mpbii.maj | . 2 | |
4 | 2, 3 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm2.26dc 902 orandc 934 19.9ht 1634 ax11v2 1813 ax11v 1820 ax11ev 1821 equs5or 1823 nfsbxy 1935 nfsbxyt 1936 nfabdw 2331 eqvisset 2740 vtoclgf 2788 vtoclg1f 2789 eueq3dc 2904 mo2icl 2909 csbiegf 3092 un00 3461 sneqr 3747 preqr1 3755 preq12b 3757 prel12 3758 nfopd 3782 ssex 4126 exmidundif 4192 iunpw 4465 nfimad 4962 dfrel2 5061 funsng 5244 cnvresid 5272 nffvd 5508 fnbrfvb 5537 funfvop 5608 acexmidlema 5844 tposf12 6248 supsnti 6982 exmidonfinlem 7170 sucpw1ne3 7209 sucpw1nel3 7210 recidnq 7355 ltaddnq 7369 ltadd1sr 7738 suplocsrlempr 7769 pncan3 8127 divcanap2 8597 ltp1 8760 ltm1 8762 recreclt 8816 nn0ind-raph 9329 2tnp1ge0ge0 10257 fsumcnv 11400 fprodcnv 11588 ef01bndlem 11719 sin01gt0 11724 cos01gt0 11725 ltoddhalfle 11852 bezoutlemnewy 11951 isprm5 12096 tangtx 13553 bdsepnft 13922 bdssex 13937 bj-inex 13942 bj-d0clsepcl 13960 bj-2inf 13973 bj-inf2vnlem2 14006 |
Copyright terms: Public domain | W3C validator |