| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbii | Unicode version | ||
| Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
| Ref | Expression |
|---|---|
| mpbii.min |
|
| mpbii.maj |
|
| Ref | Expression |
|---|---|
| mpbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbii.min |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mpbii.maj |
. 2
| |
| 4 | 2, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.26dc 908 orandc 941 19.9ht 1663 ax11v2 1842 ax11v 1849 ax11ev 1850 equs5or 1852 nfsbxy 1969 nfsbxyt 1970 nfabdw 2366 eqvisset 2781 vtoclgf 2830 vtoclg1f 2831 eueq3dc 2946 mo2icl 2951 csbiegf 3136 un00 3506 sneqr 3800 preqr1 3808 preq12b 3810 prel12 3811 nfopd 3835 ssex 4180 exmidundif 4249 iunpw 4526 nfimad 5030 dfrel2 5132 funsng 5319 cnvresid 5347 nffvd 5587 fnbrfvb 5618 funfvop 5691 acexmidlema 5934 tposf12 6354 supsnti 7106 exmidonfinlem 7300 sucpw1ne3 7343 sucpw1nel3 7344 recidnq 7505 ltaddnq 7519 ltadd1sr 7888 suplocsrlempr 7919 pncan3 8279 divcanap2 8752 ltp1 8916 ltm1 8918 recreclt 8972 nn0ind-raph 9489 2tnp1ge0ge0 10442 iswrdiz 10999 fsumcnv 11719 fprodcnv 11907 ef01bndlem 12038 sin01gt0 12044 cos01gt0 12045 ltoddhalfle 12175 bezoutlemnewy 12288 isprm5 12435 4sqlem12 12696 gsumval2 13200 nmznsg 13520 tangtx 15281 gausslemma2dlem1a 15506 lgseisenlem4 15521 2lgslem3a 15541 2lgslem3b 15542 2lgslem3c 15543 2lgslem3d 15544 bdsepnft 15785 bdssex 15800 bj-inex 15805 bj-d0clsepcl 15823 bj-2inf 15836 bj-inf2vnlem2 15869 |
| Copyright terms: Public domain | W3C validator |