| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpbii | Unicode version | ||
| Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) | 
| Ref | Expression | 
|---|---|
| mpbii.min | 
 | 
| mpbii.maj | 
 | 
| Ref | Expression | 
|---|---|
| mpbii | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpbii.min | 
. . 3
 | |
| 2 | 1 | a1i 9 | 
. 2
 | 
| 3 | mpbii.maj | 
. 2
 | |
| 4 | 2, 3 | mpbid 147 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: pm2.26dc 908 orandc 941 19.9ht 1655 ax11v2 1834 ax11v 1841 ax11ev 1842 equs5or 1844 nfsbxy 1961 nfsbxyt 1962 nfabdw 2358 eqvisset 2773 vtoclgf 2822 vtoclg1f 2823 eueq3dc 2938 mo2icl 2943 csbiegf 3128 un00 3497 sneqr 3790 preqr1 3798 preq12b 3800 prel12 3801 nfopd 3825 ssex 4170 exmidundif 4239 iunpw 4515 nfimad 5018 dfrel2 5120 funsng 5304 cnvresid 5332 nffvd 5570 fnbrfvb 5601 funfvop 5674 acexmidlema 5913 tposf12 6327 supsnti 7071 exmidonfinlem 7260 sucpw1ne3 7299 sucpw1nel3 7300 recidnq 7460 ltaddnq 7474 ltadd1sr 7843 suplocsrlempr 7874 pncan3 8234 divcanap2 8707 ltp1 8871 ltm1 8873 recreclt 8927 nn0ind-raph 9443 2tnp1ge0ge0 10391 iswrdiz 10942 fsumcnv 11602 fprodcnv 11790 ef01bndlem 11921 sin01gt0 11927 cos01gt0 11928 ltoddhalfle 12058 bezoutlemnewy 12163 isprm5 12310 4sqlem12 12571 gsumval2 13040 nmznsg 13343 tangtx 15074 gausslemma2dlem1a 15299 lgseisenlem4 15314 2lgslem3a 15334 2lgslem3b 15335 2lgslem3c 15336 2lgslem3d 15337 bdsepnft 15533 bdssex 15548 bj-inex 15553 bj-d0clsepcl 15571 bj-2inf 15584 bj-inf2vnlem2 15617 | 
| Copyright terms: Public domain | W3C validator |