| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbii | Unicode version | ||
| Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
| Ref | Expression |
|---|---|
| mpbii.min |
|
| mpbii.maj |
|
| Ref | Expression |
|---|---|
| mpbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbii.min |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mpbii.maj |
. 2
| |
| 4 | 2, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.26dc 908 orandc 941 19.9ht 1655 ax11v2 1834 ax11v 1841 ax11ev 1842 equs5or 1844 nfsbxy 1961 nfsbxyt 1962 nfabdw 2358 eqvisset 2773 vtoclgf 2822 vtoclg1f 2823 eueq3dc 2938 mo2icl 2943 csbiegf 3128 un00 3498 sneqr 3791 preqr1 3799 preq12b 3801 prel12 3802 nfopd 3826 ssex 4171 exmidundif 4240 iunpw 4516 nfimad 5019 dfrel2 5121 funsng 5305 cnvresid 5333 nffvd 5571 fnbrfvb 5602 funfvop 5675 acexmidlema 5914 tposf12 6328 supsnti 7072 exmidonfinlem 7262 sucpw1ne3 7301 sucpw1nel3 7302 recidnq 7462 ltaddnq 7476 ltadd1sr 7845 suplocsrlempr 7876 pncan3 8236 divcanap2 8709 ltp1 8873 ltm1 8875 recreclt 8929 nn0ind-raph 9445 2tnp1ge0ge0 10393 iswrdiz 10944 fsumcnv 11604 fprodcnv 11792 ef01bndlem 11923 sin01gt0 11929 cos01gt0 11930 ltoddhalfle 12060 bezoutlemnewy 12173 isprm5 12320 4sqlem12 12581 gsumval2 13050 nmznsg 13353 tangtx 15084 gausslemma2dlem1a 15309 lgseisenlem4 15324 2lgslem3a 15344 2lgslem3b 15345 2lgslem3c 15346 2lgslem3d 15347 bdsepnft 15543 bdssex 15558 bj-inex 15563 bj-d0clsepcl 15581 bj-2inf 15594 bj-inf2vnlem2 15627 |
| Copyright terms: Public domain | W3C validator |