![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbii | Unicode version |
Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mpbii.min |
![]() ![]() |
mpbii.maj |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpbii |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbii.min |
. . 3
![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | mpbii.maj |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpbid 147 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm2.26dc 907 orandc 939 19.9ht 1641 ax11v2 1820 ax11v 1827 ax11ev 1828 equs5or 1830 nfsbxy 1942 nfsbxyt 1943 nfabdw 2338 eqvisset 2748 vtoclgf 2796 vtoclg1f 2797 eueq3dc 2912 mo2icl 2917 csbiegf 3101 un00 3470 sneqr 3761 preqr1 3769 preq12b 3771 prel12 3772 nfopd 3796 ssex 4141 exmidundif 4207 iunpw 4481 nfimad 4980 dfrel2 5080 funsng 5263 cnvresid 5291 nffvd 5528 fnbrfvb 5557 funfvop 5629 acexmidlema 5866 tposf12 6270 supsnti 7004 exmidonfinlem 7192 sucpw1ne3 7231 sucpw1nel3 7232 recidnq 7392 ltaddnq 7406 ltadd1sr 7775 suplocsrlempr 7806 pncan3 8165 divcanap2 8637 ltp1 8801 ltm1 8803 recreclt 8857 nn0ind-raph 9370 2tnp1ge0ge0 10301 fsumcnv 11445 fprodcnv 11633 ef01bndlem 11764 sin01gt0 11769 cos01gt0 11770 ltoddhalfle 11898 bezoutlemnewy 11997 isprm5 12142 nmznsg 13073 tangtx 14262 bdsepnft 14642 bdssex 14657 bj-inex 14662 bj-d0clsepcl 14680 bj-2inf 14693 bj-inf2vnlem2 14726 |
Copyright terms: Public domain | W3C validator |