| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbii | Unicode version | ||
| Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
| Ref | Expression |
|---|---|
| mpbii.min |
|
| mpbii.maj |
|
| Ref | Expression |
|---|---|
| mpbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbii.min |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mpbii.maj |
. 2
| |
| 4 | 2, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.26dc 912 orandc 945 19.9ht 1687 ax11v2 1866 ax11v 1873 ax11ev 1874 equs5or 1876 nfsbxy 1993 nfsbxyt 1994 nfabdw 2391 eqvisset 2810 vtoclgf 2859 vtoclg1f 2860 eueq3dc 2977 mo2icl 2982 csbiegf 3168 un00 3538 sneqr 3837 preqr1 3845 preq12b 3847 prel12 3848 nfopd 3873 ssex 4220 exmidundif 4289 iunpw 4570 nfimad 5076 dfrel2 5178 funsng 5366 cnvresid 5394 nffvd 5638 fnbrfvb 5671 funfvop 5746 acexmidlema 5991 tposf12 6413 supsnti 7168 pr2cv1 7364 exmidonfinlem 7367 sucpw1ne3 7413 sucpw1nel3 7414 recidnq 7576 ltaddnq 7590 ltadd1sr 7959 suplocsrlempr 7990 pncan3 8350 divcanap2 8823 ltp1 8987 ltm1 8989 recreclt 9043 nn0ind-raph 9560 2tnp1ge0ge0 10516 iswrdiz 11073 fsumcnv 11943 fprodcnv 12131 ef01bndlem 12262 sin01gt0 12268 cos01gt0 12269 ltoddhalfle 12399 bezoutlemnewy 12512 isprm5 12659 4sqlem12 12920 gsumval2 13425 nmznsg 13745 tangtx 15506 gausslemma2dlem1a 15731 lgseisenlem4 15746 2lgslem3a 15766 2lgslem3b 15767 2lgslem3c 15768 2lgslem3d 15769 bdsepnft 16208 bdssex 16223 bj-inex 16228 bj-d0clsepcl 16246 bj-2inf 16259 bj-inf2vnlem2 16292 |
| Copyright terms: Public domain | W3C validator |