Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > 2spim | Unicode version |
Description: Double substitution, as in spim 1726. (Contributed by BJ, 17-Oct-2019.) |
Ref | Expression |
---|---|
2spim.nfx | |
2spim.nfz | |
2spim.1 |
Ref | Expression |
---|---|
2spim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2spim.nfz | . 2 | |
2 | 2spim.nfx | . . . 4 | |
3 | 2 | a1i 9 | . . 3 |
4 | 2spim.1 | . . . . 5 | |
5 | 4 | expcom 115 | . . . 4 |
6 | 5 | alrimiv 1862 | . . 3 |
7 | 3, 6 | spimd 13656 | . 2 |
8 | 1, 7 | spim 1726 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: ch2var 13658 |
Copyright terms: Public domain | W3C validator |