Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  2spim Unicode version

Theorem 2spim 13657
Description: Double substitution, as in spim 1726. (Contributed by BJ, 17-Oct-2019.)
Hypotheses
Ref Expression
2spim.nfx  |-  F/ x ch
2spim.nfz  |-  F/ z ch
2spim.1  |-  ( ( x  =  y  /\  z  =  t )  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
2spim  |-  ( A. z A. x ps  ->  ch )
Distinct variable groups:    x, z    x, t
Allowed substitution hints:    ps( x, y, z, t)    ch( x, y, z, t)

Proof of Theorem 2spim
StepHypRef Expression
1 2spim.nfz . 2  |-  F/ z ch
2 2spim.nfx . . . 4  |-  F/ x ch
32a1i 9 . . 3  |-  ( z  =  t  ->  F/ x ch )
4 2spim.1 . . . . 5  |-  ( ( x  =  y  /\  z  =  t )  ->  ( ps  ->  ch ) )
54expcom 115 . . . 4  |-  ( z  =  t  ->  (
x  =  y  -> 
( ps  ->  ch ) ) )
65alrimiv 1862 . . 3  |-  ( z  =  t  ->  A. x
( x  =  y  ->  ( ps  ->  ch ) ) )
73, 6spimd 13656 . 2  |-  ( z  =  t  ->  ( A. x ps  ->  ch ) )
81, 7spim 1726 1  |-  ( A. z A. x ps  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341   F/wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  ch2var  13658
  Copyright terms: Public domain W3C validator